Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 30, 2018

Co3O4/carbon nano-onions composite as supercapacitor electrode and its excellent electrochemical performance

  • Chen Wang , Fuliang Zhu , Gongrui Wang , Mingjun Xiao , Yanshuang Meng and Yue Zhang

Abstract

An ionic liquid derived Co3O4/carbon nano-onions composite has been prepared by carbothermal reduction followed by oxidation. The introduction of carbon nano-onions improves the conductivity and structural stability of Co3O4 electrode material. Electrochemical measurements indicate that the redox reversibility is significantly improved. The Co3O4/carbon nano-onions composite shows a large specific capacitance of 402.35 F g–1 at a current density of 0.5 A g–1. After 9000 cycles, the specific capacitance retention remained 76% at 1 A g–1. The as-prepared Co3O4/carbon nano-onions composite delivers superior capacitive performance with good rate capability, large specific capacitance, and excellent cyclic performance, showing great application potential for high-performance electrochemical supercapacitors.


*Correspondence address, Associate Prof. Dr. Yanshuang Meng, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China, Tel.: +86(931)2976378, Fax: +86(931)2976702, E-mail:
** Prof. Dr. Yue Zhang, Department of Mechanical and Industrial Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363, U.S.A, Tel.: +1(361)593-3342, Fax: +1(361)593-4026, E-mail:

References

[1] J.R.Miller, P.Simon: Science321 (2008) 651652. 10.1126/science.1158736Search in Google Scholar PubMed

[2] L.L.Zhang, X.S.Zhao: Chem. Soc. Rev.38 (2009) 25202531. PMid:19690733; 10.1039/b813846jSearch in Google Scholar PubMed

[3] T.Q.Lin, I.W.Chen, F.X.Liu, C.Y.Yang, H.Bi, F.F.Xu, F.Q.Huang: Science350 (2015) 15081513. 10.1126/science.aab3798Search in Google Scholar PubMed

[4] C.Guan, J.L.Liu, Y.D.Wang, L.Mao, Z.X.Fan, Z.X.Shen, H.Zhang, J.Wang: ACS Nano.9 (2015) 51985207. PMid:25868870; 10.1021/acsnano.5b00582Search in Google Scholar PubMed

[5] X.Lang, A.Hirata, T.Fujita, M.Chen: Nat. Nanotechnol.6 (2011) 232236. PMid:21336267; 10.1038/nnano.2011.13Search in Google Scholar PubMed

[6] W.Xing, S.Z.Qiao, R.G.Ding, F.Li, G.Q.Lu, Z.F.Yan, H.M.Cheng: Carbon44 (2006) 216224. 10.1016/j.carbon.2005.07.029Search in Google Scholar

[7] V.Augustyn, P.Simon, B.Dunn: Energy Environ. Sci.7 (2014) 15971614. 10.1039/c3ee44164dSearch in Google Scholar

[8] L.Huang, D.Chen, Y.Ding, S.Feng, Z.L.Wang, M.Liu: Nano Lett.13 (2013) 31353139. 10.1021/nl401086tSearch in Google Scholar PubMed

[9] W.Shi, J.Zhu, D.H.Sim, Y.Y.Tay, Z.Lu, X.Zhang, Y.Sharma, M.Srinivasan, H.Zhang, H.H.Hng, Q.Yan: J. Mater. Chem.21 (2011) 34223427. 10.1039/c0jm03175eSearch in Google Scholar

[10] S.Park, S.Kim: Electrochim. Acta89 (2013) 516522. 10.1016/j.electacta.2012.11.075Search in Google Scholar

[11] S.-E.Park, S.-J.Park, S.Kim: Carbon Letters13 (2012) 130132. 10.5714/cl.2012.13.2.130Search in Google Scholar

[12] H.Cheng, Z.G.Lu, J.Q.Deng, C.Y.Chung, K.Zhang, Y.Y.Li: Nano Research3 (2010) 895901. 10.1007/s12274-010-0063-zSearch in Google Scholar

[13] G.A.Santos, C.M.B.Santos, S.W.da Silva, E.A.Urquieta-González, P.P.C.Sartoratto: Colloids Surf., A.395 (2012) 217224. 10.1016/j.colsurfa.2011.12.033Search in Google Scholar

[14] S.K.Meher, G.R.Rao: J. Physi. Chem. C115 (2011) 2554325556. 10.1021/jp209165vSearch in Google Scholar

[15] I.Bilecka, I.Djerdj, M.Niederberger: Chem. Commun. (Camb.). (2008) 886888. PMid:18253537; 10.1039/b717334bSearch in Google Scholar PubMed

[16] S.K.Meher, G.R.Rao: J. Physi. Chem. C115 (2011) 1564615654. 10.1021/jp201200eSearch in Google Scholar

[17] Q.Ke, C.Tang, Z.Yang, M.Zheng, L.Mao, H.Liu, J.Wang: Electrochim. Acta163 (2015) 915. 10.1016/j.electacta.2015.02.136Search in Google Scholar

[18] X.Yang, K.Fan, Y.Zhu, J.Shen, X.Jiang, P.Zhao, C.Li: J. Mater. Chem.22 (2012) 1727817283. 10.1039/c2jm32571cSearch in Google Scholar

[19] J.Lang, X.Yan, Q.Xue: J. Power Sources.196 (2011) 78417846. 10.1016/j.jpowsour.2011.04.010Search in Google Scholar

[20] L.Su, Y.Jing, Z.Zhou: Nanoscale3 (2011) 39673983. 10.1039/c1nr10550gSearch in Google Scholar PubMed

[21] GopalakrishnanM, SrikeshG, MohanA, ArivazhaganV: Appl. Surf. Sci.403 (2017) 578583. 10.1016/j.apsusc.2017.01.092Search in Google Scholar

[22] B.S.Xu: Carbon47 (2009) 1613. 10.1016/j.carbon.2008.12.006Search in Google Scholar

[23] C.Portet, G.Yushin, Y.Gogotsi: Carbon45 (2007) 25112518. 10.1016/j.carbon.2007.08.024Search in Google Scholar

[24] I.Kovalenko, D.G.Bucknall, G.Yushin: Adv. Funct. Mater.20 (2010) 39793986. 10.1002/adfm.201000906Search in Google Scholar

[25] D.Pech, M.Brunet, H.Durou, P.Huang, V.Mochalin, Y.Gogotsi, P.L.Taberna, P.Simon: Nat. Nanotechnol.5 (2010) 651654. PMid:20711179; 10.1038/nnano.2010.162Search in Google Scholar PubMed

[26] Y.Meng, G.Wang, M.Xiao, C.Duan, C.Wang, F.Zhu, Y.Zhang: J. Mater. Sci.52 (2017) 1319213202. 10.1007/s10853-017-1414-xSearch in Google Scholar

[27] J.Xia, F.Zhu, G.Wang, L.Wang, Y.Meng, Y.Zhang: Solid State Ionics308 (2017) 133138. 10.1016/j.ssi.2017.06.007Search in Google Scholar

[28] M.Maccario, L.Croguennec, A.Wattiaux, E.Suard, F.Lecras, C.Delmas: Solid State Ionics179 (2008) 20202026. 10.1016/j.ssi.2008.07.004Search in Google Scholar

[29] G.Sun, L.Ma, J.Ran, X.Shen, H.Tong: J. Mater. Chem. A4 (2016) 95429554. 10.1039/c6ta03884kSearch in Google Scholar

[30] A.Sadezky, H.Muckenhuber, H.Grothe, R.Niessner, U.Pöschl: Carbon43 (2005) 17311742. 10.1016/j.carbon.2005.02.018Search in Google Scholar

[31] A.Numan, M.M.Shahid, F.S.Omar, K.Ramesh, S.Ramesh: Sens. Actuators B238 (2017) 10431051. 10.1016/j.snb.2016.07.111Search in Google Scholar

[32] Q.Wang, M.Wu, S.Meng, X.Zang, Z.Dai, W.Si, W.Huang, X.Dong: Adv. Mater. Interfaces3 (2016) 1500691. 10.1002/admi.201500691Search in Google Scholar

[33] R.Borgohain, J.Li, J.P.Selegue, Y.T.Cheng: J. Phys. Chem.C116 (2012) 1506815075. 10.1021/jp301642sSearch in Google Scholar

[34] C.Yuan, L.Yang, L.Hou, L.Shen, X.Zhang, X.W.Lou: Energy Environ. Sci.5 (2012) 78837888. 10.1039/c2ee21745gSearch in Google Scholar

[35] J.Deng, L.Kang, G.Bai, Y.Li, P.Li, X.Liu, Y.Yang, F.Gao, W.Liang: Electrochim. Acta132 (2014) 127135. 10.1016/j.electacta.2014.03.158Search in Google Scholar

[36] Z.Chang, H.Li, H.Tang, X.Z.Yuan, H.Wang: Int. J. Hydrogen Energy.34 (2009) 24352439. 10.1016/j.ijhydene.2009.01.033Search in Google Scholar

[37] H.Yan, J.Bai, M.Liao, Y.He, Q.Liu, J.Liu, H.Zhang, Z.Li, J.Wang: Eur. J. Inorg. Chem.2017 (2017) 11431152. 10.1002/ejic.201601202Search in Google Scholar

[38] L.Tao, L.Shengjun, Z.Bowen, W.Bei, N.Dayong, C.Zeng, Y.Ying, W.Ning, Z.Weifeng: Nanoscale Res. Lett.10 (2015) 208. PMid:25995711; 10.1186/s11671-015-0915-2Search in Google Scholar PubMed PubMed Central

Received: 2018-02-28
Accepted: 2018-04-09
Published Online: 2018-08-30
Published in Print: 2018-09-14

© 2018, Carl Hanser Verlag, München

Downloaded on 12.6.2024 from https://www.degruyter.com/document/doi/10.3139/146.111682/html
Scroll to top button