Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 12, 2019

The simulation and study of ELAP event with URG and FLEX mitigation strategies for PWR by using TRACE code

Simulation und Untersuchung von ELAP-Ereignissen unter Berücksichtigung von URG- und FLEX-Strategien für DWR unter Verwendung des TRACE-Codes
  • J.-H. Yang , J.-R. Wang , C. Shih , C.-F. Huang and S.-W. Chen
From the journal Kerntechnik

Abstract

In this research, TRACE code with the interface SNAP was used to evaluate and simulate the postulated Extended Loss of AC Power (ELAP) accident in Maanshan Nuclear Power Plant (NPP). This study is to determine whether Reactor Coolant System (RCS) water level will be below Top of Active Fuel (TAF) while the 5th diesel generator and gas turbines are all disabled when the accident occurred. The scenario and assumptions of postulated ELAP in this research are referred to the WCAP-17601-Pt and NUREG-1953 reports. Additionally, this study will run a base case without any mitigation strategy and four cases with multiple mitigation strategies to analyze the effectiveness of URG and FLEX strategies. According to the analysis results of TRACE, it can be found that all four cases with mitigation strategies can keep RCS water level above TAF. This indicates that URG and FLEX strategies can ensure the safety function of reactor.

Kurzfassung

In diesem Beitrag wurde der TRACE code mit der Schnittstelle SNAP verwendet, um den postulierten Extended Loss of AC Power (ELAP)-Unfall im Kernkraftwerk Maanshan (NPP) auszuwerten und zu simulieren. Diese Studie soll bestimmen, ob der Wasserstand des Reactor Coolant System (RCS) unter dem Top of Active Fuel (TAF) liegt, während der 5. Dieselgenerator und die Gasturbinen bei dem Unfall deaktiviert sind. Das Szenario und die Annahmen des postulierten ELAP beziehen sich auf die Berichte WCAP-17601-Pt und NUREG-1953. Zusätzlich wird in dieser Studie ein Basisfall ohne Minderungsstrategie und vier Fälle mit mehreren Minderungsstrategien zur Analyse der Wirksamkeit von URG- und FLEX-Strategien durchgeführt. Nach den Analyseergebnissen von TRACE lässt sich feststellen, dass alle vier Fälle mit Minderungsstrategien den RCS-Wasserstand über TAF halten können. Dies zeigt, dass URG- und FLEX-Strategien die Sicherheitsfunktion des Reaktors gewährleisten können.


* E-mail:

References

1 Taiwan Power Company: Maanshan nuclear power plant ultimate response guideline. No. 1451, 2014Search in Google Scholar

2 NEI: Diverse and Flexible Coping Strategies (FLEX) Implementation Guide. NEI 12-06, 2012Search in Google Scholar

3 Miller, C.; Cabbage, A.; Dorman, D.; Grobe, J.; HolahanG.; Sanfilippo, N.: Recommendations for enhancing reactor safety in the 21st century. 2011Search in Google Scholar

4 Institute of Nuclear Power Operations: Near-term actions to address the effect of an extended loss of all AC power in response to the Fukushima Daiichi Event. INPO IER11-4, 2011Search in Google Scholar

5 U.S. NRC: TRACE V5.840 user's manual. 2014Search in Google Scholar

6 Applied Programming Technology, Inc.: Symbolic nuclear analysis package (SNAP) user's manual, 2012Search in Google Scholar

7 Montero-Mayorga, J.; Queral, C.; Gonzalez-Cadelo, J.: AP1000 SBLOCA simulations with TRACE code. Annals of Nuclear Energy75 (2015) 8710010.1016/j.anucene.2014.07.045Search in Google Scholar

8 Gajev, I.; Ma, W.; Kozlowski, T.: Sensitivity Analysis of Input Uncertain Parameters on BWR Stability Using TRACE/PARCS. Annals of Nuclear Energy67 (2014) 495810.1016/j.anucene.2013.10.016Search in Google Scholar

9 Queral, C.; Montero-Mayorga, J.; Gonzalez-Cadelo, J.; Jimenez, G.: AP1000 Large-Break LOCA BEPU analysis with TRACE code. Annals of Nuclear Energy85 (2015) 57658910.1016/j.anucene.2015.06.011Search in Google Scholar

10 Jimenez, G.; Queral, C.; Rebollo-Mena, M.J.; Martinez-Murillo, J. C.; Lopez-Alonso, E.: Analysis of the Operator Action and the Single Failure Criteria in A SGTR Sequence Using Best Estimate Assumptions with TRACE 5.0. Annals of Nuclear Energy58 (2013) 16117710.1016/j.anucene.2013.02.023Search in Google Scholar

11 Zhang, Y.; Mikityuk, K.: Static and transient analysis of a medium-sized sodium cooled fast reactor loaded with oxide, nitride, carbide and metallic fuels. Annals of Nuclear Energy87 (2016) 76177110.1016/j.anucene.2015.03.025Search in Google Scholar

12 Montero-Mayorga, J.; Queral, C.; Gonzalez-Cadelo, J.: Effects of Delayed RCP Trip during SBLOCA in PWR. Annals of Nuclear Energy63 (2014) 10712510.1016/j.anucene.2013.06.030Search in Google Scholar

13 Hursin, M.; Bogetic, S.; Dohkane, A.; Canepa, S.; Zerkak, O.; Ferroukhi, H.; Pautz, A.: Development and validation of a TRACE/PARCS core model of Leibstadt Kernkraftwerk cycle 19. Annals of Nuclear Energy101 (2017) 55957510.1016/j.anucene.2016.11.001Search in Google Scholar

14 Gonzalez-Cadelo, J.; Queral, C.; Montero-Mayorga, J.: Analysis of Cold Leg LOCA with Failed HPSI by Means of Integrated Safety Assessment Methodology. Annals of Nuclear Energy69 (2014) 14416710.1016/j.anucene.2014.02.001Search in Google Scholar

15 Dokhane, A.; Judd, J.; Gajev, I.; Zerkak, O.; Ferroukhi, H.; Kozlowski, T.: Analysis of Oskarshamn-2 stability event using TRACE/SIMULATE-3 K and comparison to TRACE/PARCS and SIMULATE-3 K stand-alone. Annals of Nuclear Energy102 (2017) 19019910.1016/j.anucene.2016.12.015Search in Google Scholar

16 PWROG: Reactor Coolant System Response to the Extended Loss of AC Power Event for Westinghouse. Combustion Engineering and Babcock & Wilcox NSSS Designs, WCAP-17601-P, 2012Search in Google Scholar

17 Esmaili, H.; Helton, D.; Marksberry, D.; Sherry, R.; Appignani, P.; Dube, D.; Tobin, M.; Buell, R.; Koonce, T.; Schroeder, J.: Confirmatory Thermal-Hydraulic Analysis to Support Specific Success Criteria in the Standardized Plant Analysis Risk Models – Surry and Peach Bottom. NUREG-1953, 2011Search in Google Scholar

18 Cheng, Y. H.; Wang, J. R.; Lin, H. T.; Shih, C.: Benchmark calculations of pressurizer model for Maanshan nuclear power plant using TRACE code. Nuclear Engineering and Design239 (2009) 2343234810.1016/j.nucengdes.2009.07.025Search in Google Scholar

19 Taiwan Power Company: Maanshan Nuclear Power Station Final Safety Analysis Report (FSAR). 2013Search in Google Scholar

20 Wang, J. R.; Lin, H. T.; Cheng, Y. H.; Wang, W. C.; Shih, C.: TRACE modeling and its verification using Maanshan PWR start-up tests. Annals of Nuclear Energy36 (2009) 52753610.1016/j.anucene.2008.12.017Search in Google Scholar

21 Wang, J. R.; Huang, K. C.; Lin, H. T.; Shih, Chunkuan, C.: TRACE Simulation of SBO Accident and Mitigation Strategy in Maanshan PWR. NUREG/IA-0430, 2013Search in Google Scholar

Received: 2018-02-15
Published Online: 2019-04-12
Published in Print: 2019-04-15

© 2019, Carl Hanser Verlag, München

Downloaded on 12.6.2024 from https://www.degruyter.com/document/doi/10.3139/124.110999/html
Scroll to top button