Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 20, 2017

Dose assessment for emergency workers in early phase of Fukushima Daiichi nuclear power plant accident

Dosisbestimmung bei Notfalleinsätzen in der frühen Phase des Unfalls im Fukushima-Daiichi-Kernkraftwerk
  • N. Sadeghi , R. Ahangari , Y. Kasesaz and O. Noori-kalkhoran
From the journal Kerntechnik

Abstract

In the case of Fukushima Daiichi nuclear power plant (FNP) accident, the radioactive material was released from reactor units 1–3 and transported to short and long distances due to the atmospheric pathways-motions. Power sources for monitoring posts were lost due to earthquake and tsunami. Based on air dose rates and other data measured by monitoring cars, the amount of radioactive material released to the atmosphere from the power station was obtained. The atmospheric dispersion and the transport model used in the RASCAL code, estimate the radionuclide concentrations downwind, both in the air and on the ground due to deposition. The calculated concentrations are then used to estimate the projected doses for workers in vicinity of the accident area in the first minutes of accident time. For dose modeling, we assumed that each worker was 15 min in vicinity of FNP in accident situation, once without and once with protective clothes or respirator. According to Tokyo Electric Power Company (TEPCO) report six workers had received doses over 250 mSv (309 to 678 mSv) apparently due to inhaling Iodine-131 fume. In this paper the calculated dose results using RASCAL code shows that, if emergency workers who work in early phase of accident had not used protective equipment, for 15 min, inhalation doses from iodine in their thyroid gland up to 12 March afternoon would have been 520 mSv. A comparison between calculation results and TEPCO report shows that dose calculated virtually is nearly equal to TEPCO measurement results.

Kurzfassung

Bei dem Unfall im Fukushima-Daiichi-Kernkraftwerk wurden radioaktive Stoffe freigesetzt und durch atmosphärische Ausbreitung über kurze und weite Entfernungen transportiert. Auf der Grundlage von Dosisleistungsmessungen in Luft und Messdaten von Überwachungsfahrzeugen wurde die in die Atmosphäre freigesetzte Menge an radioaktiven Stoffen bestimmt. Mit Hilfe der im RASCAL Rechencode verwendeten Transportmodelle wurden die Radionuklidkonzentrationen in der Luft und am Boden bestimmt. Die berechneten Konzentrationen wurden dann verwendet um Dosisabschätzungen von Beschäftigten in den ersten Minuten nach dem Unfall zu machen. Für die Modellrechnungen wurde angenommen, dass sich jeder Beschäftigte 15 Minuten in unmittelbarer Nähe des Unfallortes aufhielt, mit und ohne Schutzkleidung und Atemschutzgerät. Nach Angaben der Tokyo Electric Power Company (TEPCO) haben 6 Beschäftigte Dosen über 250 mSv (309 to 678 mSv) durch Inhalation von Iod-131 erhalten. In diesem Beitrag zeigen die mit Hilfe des RASCAL-Codes berechneten Ergebnisse, dass die Notfalleinsatzkräfte in der frühen Phase des Unfalls nach 15 Minuten ohne Schutzkleidung bereits eine Dosis von 520 mSv erhalten hätten. Ein Vergleich mit dem TEPCO-Report zeigt, dass die berechneten Dosen mit den dort berichteten Dosen nahezu übereinstimmen.


* Corresponding Author: E-mail:

References

1 American Nuclear Society report on Fukushima Daiichi. http://fukushima.ans.orgSearch in Google Scholar

2 WadaK.; YoshikawaT.; HayashiT.; AizawaY.: Emergency response technical work at Fukushima Dai-ichi nuclear power plant: occupational health challenges posed by the nuclear disaster. Occup. Environ. Med.69 (2012) 59910.1136/oemed-2011-100587Search in Google Scholar PubMed PubMed Central

3 International Atomic Energy Agency (IAEA): Generic Models and Parameters for Assessing the Environmental Transfer of Radionuclides from Routine Releases, Procedures and Data. IAEA Safety Series Publication No. 57, Vienna (1982)Search in Google Scholar

4 Nuclear Regulatory Commission (NRC): RASCAL 3.0.5: Description of Models and Methods. U.S. Nuclear Regulatory Commission, NUREG-1887 (2007)Search in Google Scholar

5 RASCAL Code 4.3 User's Guide. https://www.nrc.govSearch in Google Scholar

6 Tokyo Electric Power Company: Estimation of Radioactive Material Released to the Atmosphere during the Fukushima Daiichi NPS Accident, May 2012. http://www.tepco.co.jp/en/press/corp-com/release/betu12_e/images/120524e0205.pdfSearch in Google Scholar

7 TakuyaK. et al.: Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations. J. Nucl. Sci. Technol.50 (2013) 25510.1080/00223131.2013.772449Search in Google Scholar

8 ChinoM. et al.: Preliminary estimation of release amounts of I-131 and Cs-137 accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J. Nucl. Sci. Technol.48 (2011) 112910.1080/18811248.2011.9711799Search in Google Scholar

9 KatataG. et al.: Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model. Atmos. Chem. Phys.15 (2015) 102910.5194/acp-15-1029-2015Search in Google Scholar

10 LinW. H. et al.: Radioactive source terms for the Fukushima nuclear accident. Sci. China: Earth Sci. 58 (2015) 6Search in Google Scholar

11 TeradaH. et al.: Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radio.112 (2012) 14110.1016/j.jenvrad.2012.05.023Search in Google Scholar PubMed

12 United Nations Scientific Committee on the Effects of Atomic Radiation: UNSCEAR 2013 Report: Sources, effects and risks of ionizing radiation, Volume I, ANNEX A: Levels and effects of radiation exposure due to the nuclear accident after the 2011 great east-Japan earthquake and tsunami, http://www.unscear.orgSearch in Google Scholar

13 U.S. Environmental Protection Agency: Protective Action Guides and Planning Guidance for Radiological Incidents (PAG Manual). Draft for Interim use and Public comment (2013), https://www.epa.govSearch in Google Scholar

14 International Atomic Energy Agency: The Fukushima Daiichi accident emergency preparedness and response (August 2015)Search in Google Scholar

15 Tokyo Electric Power Company: Fukushima Nuclear Accident Analysis Report, TEPCO, Tokyo (2012), http://www.tepco.co.jpSearch in Google Scholar

16 Two-way protection for clean room environments. http://www.dppeurope.comSearch in Google Scholar

17 KobayashiD. et al.: Reducing radiation exposure using commonly available objects. Environ. Health. Prev. Med.18 (2013) 261 PMid:23124576;10.1007/s12199-012-0314-6Search in Google Scholar PubMed PubMed Central

18 3MTM Occupational Health and Environmental Safety Division: 3MTM Particulate Filter. http://solutions.3m.com.Search in Google Scholar

19 World Nuclear Association: Fukushima Accident. http://www.world-nuclear.org/information-library/safety-and-security/safety-of-plants/fukushima-accident.aspxSearch in Google Scholar

20 YasuiS.: Engineering Case Report Lessons Learned: Radiological Protection for Emergency Workers at the TEPCO Fukushima Daiichi. Journal of Occupational and Environmental Hygiene (2013), 310.1080/15459624.2013.83261Search in Google Scholar

21 YasuiS.: Engineering Case Reports Governmental Re-evaluation of the Committed Effective Dose Received by Emergency Workers at the TEPCO Fukushima Daiichi NPP Accident. Journal of Occupational and Environmental Hygiene (2015) 10.1080/15459624.2014.989364Search in Google Scholar PubMed

22 Fukushima Nuclear Accidents Investigation Report of Tokyo Electric Power Company. http://www.tepco.co.jpSearch in Google Scholar

23 ICRP: Symposium on Radiological Protection Dosimetry, Dose Assessment of Workers and the Public from Fukushima. http://www.icrp.orgSearch in Google Scholar

24 Office for Radiation Protection of Workers, Ministry of Health, Labour and Welfare, Response and Action Taken by the Ministry of Health, Labour and Welfare of Japan on Radiation Protection for Workers Involved in the TEPCO Fukushima Daiichi Nuclear Power Plant Accident (2013)Search in Google Scholar

25 http://www.mhlw.go.jp/english/topics/2011eq/workers/index.htmlSearch in Google Scholar

26 PeltierL. Joel et al.: Metrological Uncertainty Effects in Atmospheric Transport and Dispersion Modeling, the Pennsylvania State University, State College (2001)Search in Google Scholar

Received: 2017-04-05
Published Online: 2017-10-20
Published in Print: 2017-10-26

© 2017, Carl Hanser Verlag, München

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.3139/124.110799/html
Scroll to top button