Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 18, 2013

Effect of using FLiBe and FLiNaBe molten salts bearing plutonium fluorides on the neutronic performance of PACER

Einfluss von plutonimfluoridhaltigen Flüssigsalzen (FLiBe, FLiNaBe) auf die Neutronenleistung im Peaceful Atomic Confined Explosion Reactor (PACER)
  • A. Acir
From the journal Kerntechnik

Abstract

In this paper, the effects of using FLiBe and FLiNaBe Molten Salts Bearing Plutonium Fluorides on the neutronic performance of the PACER are investigated. The optimum radial thickness for tritium self-sufficiency of the blankets addition of plutonium fluorides to FLiNaBe (LiF-/NaF BeF2) and FLiBe (LiF-/BeF2) of a dual purpose modified PACER concept are determined. The calculations are carried out with the one dimensional transport code XSDRNPM/SCALE5. The tritium breeding capacities of FLiNaBe and FLiBe with addition of plutonium fluorides in molten salt zone are investigated and compared. The optimum molten salt zone thickness is computed as 155 cm for tritium self-sufficiency of the blankets using FLiBe +1% PuF4 whereas, the optimum thickness with FLiNaBe +1% PuF4 is calculated as 170 cm. In addition, neutron transport calculations have been performed to evaluate the energy multiplication factor, total fission rate, displacement per atom and helium gas generation for optimal radial thickness in the blanket. Also, the tritium production and the radiation damage limits should be evaluated together in a fusion blanket for determining the optimum thickness of molten salt layer.

Kurzfassung

In sog. PACER-Reaktorkonzept wird durch (unterirdisch stattfindende) Explosionen Energie in Flüssigsalzen freigesetzt. Die Flüssigsalze geben diese Energie über einen Wärmetauscher an Wasser ab. Der so gewonnene Wasserdampf treibt die mit dem Generator verbundene Turbine an. Dabei fungieren die Flüssigsalze gleichzeitig als Kühlmittel und als Tritiumbrutzone. In diesem Beitrag wird der Einfluss des Zusatzes von Plutoniumfluoriden zu den Flüssigsalzen u.a. auf die selbsterhaltende Tritiumbrutkapazität untersucht. Die Berechnungen mit dem 1D-Programm XSDRNPM/SCALE5 bestimmen eine für eine selbsterhaltende Tritium-brutreaktion optimale Dicke der Flüssigsalzzone von 155 cm für die Mischung aus FLiBe +1% PuF4 und eine optimal Dicke von 170 cm für die Mischung von FLiNaBe +1% PuF4.

References

1 Angelo, J. A.: Nuclear Technology, Greenwood press, 2004Search in Google Scholar

2 Call, C. J.; Moir, R. W.: A Novel Fusion Power Concept Based on Molten-Salt Technology: PACER Revisted. Nucl. Sci. Eng.104 (1990) 364Search in Google Scholar

3 Szöke, A.; Moir, R. W.: A Practical Route to Fusion Power. Technol. Rev.94 (1991) 20Search in Google Scholar

4 Szöke, A.; Moir, R. W.: A Realistic, Gradual and Economical Approach to Fusion Power. Fusion Technol.20 (1991) 1012Search in Google Scholar

5 Moir, R. W.: PACER Revisted. Fusion Technol.15 (1989) 1114Search in Google Scholar

6 Engineering with nuclear explosives, in Proceedings of the 3rd Plowshare Symposium, TID-7695 (U.S. Department of Energy/Office of Scientific and Technical Information, Oak Ridge, 1964)Search in Google Scholar

7 Teller, E.; Talley, W.; Higgins, G.: Constructive Uses of Nuclear Explosives. McGraw-Hill, New York, 1968Search in Google Scholar

8 Hubbard, H. W.: Project PACER Final Report. RDA-TR-4100- 003 (R&D Associates, 1974)Search in Google Scholar

9 Seifritz, W.: PACER: A Ground Design for Fusion Power, Fusion4 (1980) 22Search in Google Scholar

10 Hammond, R. P.: Practical Fusion Power. Mech. Eng.104 (1982) 34Search in Google Scholar

11 Debonnel, C. S.; Fukuda, G. T.; Bardet, P. M.; Peterson, P. F.: Fusion Eng. Des.63–64 (2002) 64710.1016/S0920-3796(02)00140-0Search in Google Scholar

12 Übeyli, M.; Acir, A.: Utilization of thorium in a high power density hybrid reactor with innovative coolants. Energy Conversion and Management48 (2007) 57658210.1016/j.enconman.2006.06.007Search in Google Scholar

13 Şahin, S.; Moir, R. W.; Ünalan, S.: Neutronic Investigation of A Power Plant Using Peaceful Nuclear Explosives. Fusion Technol.26 (1994) 1311Search in Google Scholar

14 Şahin, S.; Yalçin, S.; Yildiz, K.: Fissile Fuel Breeding with Peaceful Nuclear Explosives, Fusion Eng. Des.65 (2003) 643Search in Google Scholar

15 Ünalan, S.: Power stabilization and temporal performance of a peaceful nuclear explosion reactor with a mixture of 90 % FLiBe +10 % UF4 (or ThF4). Fusion Eng. Des.70 (2004) 23310.1016/j.fusengdes.2004.02.002Search in Google Scholar

16 Şahin, S.; Şahin, H. M.; Yildiz, K.; Acir, A.: Effects of spectral shifting in an inertial confinement fusion system. Kerntechnik70 (2005) 233Search in Google Scholar

17 Acir, A.; Übeyli, M.: Effect of Using Thorium Molten Salts on the Neutronic Performance of PACER. J. Fusion Energy29 (2010) 11311810.1007/s10894-009-9241-ySearch in Google Scholar

18 Acir, A.: Improvement of the Neutronic Performance of the PACER Fusion Concept using Thorium Molten Salt with Reactor Grade Plutonium. J. Fusion Energy (DOI:10.1007/s10894-012-9518-4) (2012)Search in Google Scholar

19 Petrie, L. M.: Scale System Driver. NUREG/CR-0200, Revision 7, Volume III, Section M1, ORNL/NUREG/CSD-2/V3/R7, 19 May 2004 (Oak Ridge National Laboratory, Oak Ridge, 2004)Search in Google Scholar

20 Greene, N. M.; Petrie, L. M.: XSDRNPM: a one-dimensional discrete-ordinates code for transport analysis. NUREG/CR-0200, Revision 7, Volume 2, Section F3, ORNL/NUREG/CSD-2/V2/R7 (Oak Ridge National Laboratory, Oak Ridge, 2004)Search in Google Scholar

21 Jordan, W. C.; Bowman, S. M.; Hollenbach, D. F.: Scale cross-section libraries. NUREG/CR-0200, Revision 7, Volume 3, Section M4, ORNL/NUREG/CSD-2/V3/R7 (Oak Ridge National Laboratory, Oak Ridge, 2004)Search in Google Scholar

22 IAEA, (2003), Potential of Thorium Based Fuel Cycles to Constrain Plutonium and Reduce Long Lived Waste Toxicity, IAEA-TECDOC-1349, International Atomic Energy AgencySearch in Google Scholar

23 Blink, A.; Hogam, W. J.; Hovingh, J.; Meier, E. R.; Pitts, J. H.: High-Yield Lithium-Injection Fusion Energy (HYLIFE) Reactor. UCRL-53559, ed. by K.L.Essary, K.E.Lewis (Lawrence Livermore National Laboratory, Livermore, 1985)10.2172/6124368Search in Google Scholar

24 Perlado, M.; Guinan, M. W.; Abe, K.: Radiation Damage in Structural Materials. Energy from Inertial Fusion (International Atomic Energy Agency, 272, Vienna, 1995)Search in Google Scholar

Received: 2012-5-22
Published Online: 2013-05-18
Published in Print: 2012-12-01

© 2012, Carl Hanser Verlag, München

Downloaded on 28.5.2024 from https://www.degruyter.com/document/doi/10.3139/124.110273/html
Scroll to top button