Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 21, 2017

Introducing gear ratings and AGMA conversion factors for the steel spur gear design under bending fatigue

Einführung von Getrieben und AGMA-Umwandlungsfaktoren für das Design von Kegelrädern unter Wechselbiegebelastung
  • Necdet Geren , Çağrı Uzay and Melih Bayramoğlu
From the journal Materials Testing

Abstract

The design approaches are not rated for gear tooth volume, the designers are not aware of the loss or gain on the cost, and failure or success of the design. This study provides a novel method to rate and convert textbook gear design approaches into ANSI/AGMA standard. The steel pinions with lowest and highest strengths covering minimum and maximum strengths available for the gear design meshing with cast iron gear were used in order to ensure that the method presented is generic. The method relies on obtaining design data (module m (mm) and face width F (mm)) for the most common design approaches considering bending fatigue. The gear design approaches are rated for the loss or gain using dimensionless geometric rating numbers, and then dimensionless conversion factors are obtained. Mean values of conversion factors independent of input power for the desired speed ratio are used to derive correlation equations for converting the design results of the selected approach to ANSI/AGMA standard. The method verified by case studies is generic and applicable to any gear design approach. Now, the most commonly used spur gear design approaches are rated by considering the gear volume. Furthermore, m and F obtained from the easiest textbook design approaches can be easily converted into the most accurate but more complicated, challenging and time-consuming ANSI/AGMA standard with minimum effort and error. It does not only allow saving time and resources but also provides safer and reliable designs for designers who are not bound to use a specific gear standard.

Kurzfassung

Die Designansätze sind nicht für das Getrieberadzahnvolumen geeignet, den Designern sind die Zunahme oder Abnahme der Kosten sowie das Versagen oder der Erfolg des Designs nicht bekannt. Die diesem Beitrag zugrunde liegende Studie sieht ein neuartiges Verfahren vor, um Designansätze aus Lehrbüchern zu bewerten und in ANSI/AGMA-Normen umzurechnen. Die Stahlstirnräder mit den niedrigsten und den höchsten Festigkeiten wurden verwendet, um die minimalen und maximalen für die Getriebedesignvernetzung zur Verfügung stehenden Festigkeiten abzudecken, und, um sicherzustellen, dass die vorgestellten Verfahren generisch sind. Das Verfahren basiert darauf, dass die Ermittlung der Designdaten (Modul m und Flankenbreite F) für die meisten üblichen Designansätze Wechselbiegebelastung berücksichtigt. Die Ansätze für die Getriebeauslegung werden nach dem Verlust bzw. Anstieg bemessen, in dem dimensionslose Getriebebemessungszahlen verwendet werden und schließlich dimensionslose Umwandlungsfaktoren ermittelt werden. Die Hauptwerte der Umwandlungsfaktoren werden eingesetzt, um Korrelationsfaktoren für die Umrechnung der Designergebnisse des gewählten Ansatzes in die ANSI/AGMA-Normen abzuleiten, und zwar unabhängig von der Eingangsleistung für das anzustrebende Geschwindigkeitsverhältnis. Das mittels Fallstudien verifizierte Verfahren ist generisch und für jeden Getriebeauslegungsansatz anwendbar. Anschließend werden die meisten üblicherweise verwendeten Designansätze für Kegelradgetriebe bewertet, indem das Volumen berücksichtigt wird. Zudem können die Parameter m und F, die aus den einfachsten Lehrbuch-Designansätzen ermittelt werden, leicht in die genauesten, aber komplizierteren, herausfordernden und zeitaufwändigen ANSI/AGMA-Normen mit minimalem Aufwand und Fehler umgewandelt werden. Dies erlaubt nicht nur eine Zeit und Ressourceneinsparung, sondern stellt auch sichere und verlässlichere Auslegungen für Designer zur Verfügung, die nicht an einen spezifischen Getriebestandard gebunden sind.


*Correspondence Address, Prof. Dr. Necdet Geren, University of Çukurova, Mechanical Engineering Department, Faculty of Engineering and Architecture, 01330 Balcalı-Adana, Turkey, E-mail:

Prof Dr. Necdet Geren, born in 1963, received his PhD degree from the Department of Aeronautical and Mechanical Engineering of University of Salford, UK, in 1993. He is currently Professor in the Department of Mechanical Engineering, University of Çukurova, Adana, Turkey. His research interests cover machine design, the design of machine members and the design of manufacturing systems.

Çağrı Uzay, born in 1989, received his BSc degree in 2012 and his MSc in 2014, and is enrolled for a PhD in the Mechanical Engineering Department of Çukurova University, Adana, Turkey. He is currently a research assistant in the same department. His research interests include machine element design and gear design.

Prof. Dr. Melih Bayramoğlu received his PhD in Manufacturing and Mechanical Engineering from the University of Birmingham, UK, in 1993. He is currently Professor in the Mechanical Engineering Department of University of Çukurova in Adana, Turkey. His work at the university involves giving courses and conducting research in the areas of machining, design, water jet cutting, welding and surface treatment.


References

1 Ç.Uzay: A Comparison of Approaches to Involute Spur Gear Design, MSc Thesis, Cukurova University Institute of Natural and Applied Science, Adana, Turkey (2014)Search in Google Scholar

2 ANSI/AGMA 2101-D04 Standard: Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth, Virginia, USA (2004)Search in Google Scholar

3 ISO Standard 6336: Calculation of Load Capacity of Spur and Helical Gears – Basic Principles, Introduction and General Influence Factors, Part 1, Switzerland (2006)Search in Google Scholar

4 ISO Standard 6336: Calculation of Load Capacity of Spur and Helical Gears – Calculation of Tooth Bending Strength, Part 3, London, UK (2006)Search in Google Scholar

5 ISO Standard 6336: Calculation of Load Capacity of Spur and Helical Gears – Strength and Quality of Materials, Part 5, Switzerland (2003)Search in Google Scholar

6 ISO Standard 6336: Calculation of Load Capacity of Spur and Helical Gears – Calculation of Service Life under Variable Load, Part 6, Switzerland (2004)Search in Google Scholar

7 R. G.Budynas, J. K.Nisbett: Shigley's Mechanical Engineering Design, 9th Ed., McGraw-Hill, New York, USA (2011)Search in Google Scholar

8 R. C.Juvinall, K. M.Marshek: Fundamentals of Machine Component Design, 5th Ed., Wiley, USA (2011)Search in Google Scholar

9 C.Li, H.Chiou, C.Hung, Y.Chang, C.Yen: Integration of finite element analysis and optimum design on gear systems, Finite Elements in Analysis and Design38 (2002), pp. 17919210.1016/S0168-874X(01)00057-9Search in Google Scholar

10 C.Gologlu, M.Zeyveli: A genetic approach to automate preliminary design of gear drives, Computers & Industrial Engineering57 (2009), pp. 1043105110.1016/j.cie.2009.04.006Search in Google Scholar

11 F.Mendi, T.Başkal, K.Boran, F. E.Boran: Optimization of module, shaft diameter and rolling bearing for spur gear through genetic algorithm, Expert Systems with Applications37 (2010), pp. 8058806410.1016/j.eswa.2010.05.082Search in Google Scholar

12 F.Mendi, T.Başkal, M. K.Külekci: Application of genetic algorithm (GA) for optimum design of module, shaft diameter and bearing for bevel gearbox, Materials Testing54 (2012), No. 6, pp. 43143610.3139/120.110349Search in Google Scholar

13 K. J.Huang, H. W.Su: Approaches to parametric element constructions and dynamic analyses of spur/helical gears including modifications and undercutting, Finite Elements in Analysis and Design46 (2010), pp. 110611130.1016/j.finel.2010.08.002Search in Google Scholar

14 A. G.Kamble, R. R.Venkata, A. S.Potdar, A. D.Lokhande: Prediction and optimization of spur gear pair by response surface method, Journal of Advances in Engineering Science Section B1 (2010), pp. 1520Search in Google Scholar

15 N.Marjanovic, B.Isailovic, V.Marjanovic, Z.Milojevic, M.Blagojevic, M.Bojic: A practical approach to the optimization of gear trains with spur gears, Mechanism and Machine Theory53 (2012), pp. 11610.1016/j.mechmachtheory.2012.02.004Search in Google Scholar

16 S.Golabi, J. J.Fesharaki, M.Yazdipoor: Gear train optimization based on minimum volume/weight design, Mechanism and Machine Theory73 (2014), pp. 19721710.1016/j.mechmachtheory.2013.11.002Search in Google Scholar

17 S. K.Tiwari, U. K.Joshi: Stress analysis of mating involute spur gear teeth, International Journal of Engineering Research and Technology1 (2012), No. 9, pp. 112Search in Google Scholar

18 V.Karaveer, A.Mogrekar, T. P. R.Joseph: Modeling and finite element analysis of spur gear, International Journal of Current Engineering and Technology3 (2013), No. 5, pp. 21042107Search in Google Scholar

19 S. P.Shinde, A. A.Nikam, T. S.Mulla: Static analysis of spur gear using finite element analysis, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE)5 (2009), pp. 2631Search in Google Scholar

20 V. V.Ambade, A. V.Vanalkar, P. R.Gajbhiye: Involute gear tooth contact and bending stress analysis, International Journal of Computational Engineering Research8 (2013), No. 3, pp. 3036Search in Google Scholar

21 B.Gupta, A.Choubey, G. V.Varde: Contact stress analysis of spur gear, International Journal of Engineering Research & Technology (IJERT)1 (2012), No. 4, pp. 17Search in Google Scholar

22 A. K.Jebur, I. A.Khan, Y.Nath: Numerical and experimental dynamic contact of rotating spur gear, Modern Applied Science5 (2011), No. 2, pp. 25426310.5539/mas.v5n2p254Search in Google Scholar

23 M. B.Sanchez, J. I.Pedrero, M.Pleguezuelos: Critical stress and load conditions for bending calculations of involute spur and helical gears, International Journal of Fatigue48 (2013), pp. 283810.1016/j.ijfatigue.2012.11.015Search in Google Scholar

24 R. K.Carroll, G. E.Johnson: Dimensionless solution to the optimal design of spur gear sets, Journal of Mechanisms, Transmissions, and Automation in Design111 (1989), pp. 29029610.1115/1.3258997Search in Google Scholar

25 S.Li: Finite element analyses for contact strength and bending strength of a pair of spur gears with machining errors, assembly errors and tooth modifications, Mechanism and Machine Theory42 (2007), pp. 8811410.1016/j.mechmachtheory.2006.01.009Search in Google Scholar

26 N. L.Pedersen: Improving bending stress in spur gears using asymmetric gears and shape optimization, Mechanism and Machine Theory45 (2010), pp. 1707172010.1016/j.mechmachtheory.2010.06.004Search in Google Scholar

27 K.Cavdar, F.Karpat, F. C.Babalik: Computer aided analysis of bending strength of involute spur gears with asymmetric profile, Journal of Mechanical Design127 (2005), pp. 47748410.1115/1.1866158Search in Google Scholar

28 A.Parthiban, P. R.Raju, V.Sreenivasulu, P. D.Rao, C. U.Kiran: Profile modification for increasing the tooth strength in spur gear using CAD & CAE, International Journal of Innovations in Engineering and Technology2 (2013), No. 1, pp. 231241Search in Google Scholar

29 S.Sankar, M.Nataraj: Profile modification – A design approach for increasing the tooth strength in spur gear, The International Journal of Advanced Manufacturing Technology55 (2011), pp. 11010.1007/s00170-010-3034-3Search in Google Scholar

30 K.Marković, M.Franulović: Contact stresses in gear teeth due to tip relief profile modification, Engineering Review31 (2011), No. 1, pp. 1926Search in Google Scholar

31 K. O.Beckman, V. P.Patel: A review of API versus AGMA gear standards – Ratings, data sheet completion, and gear selection guidelines, Proceedings of the 29th Turbomachinery Symposium (2000), pp. 191204Search in Google Scholar

32 A.Kawalec, J.Wiktor, D.Ceglarek: Comparative analysis of tooth-root strength using ISO and AGMA standards in spur and helical gears with FEM-based verification, Journal of Mechanical Design128 (2006), No. 5, pp. 1141115810.1115/1.2214735Search in Google Scholar

33 A.Kawalec, J.Wiktor: Tooth root strength of spur and helical gears manufactured with gear-shaper cutters, Journal of Mechanical Design130 (2008), pp. 1510.1115/1.2829909Search in Google Scholar

34 A. C.Ugural: Mechanical Design: An Integrated Approach, 1st Ed., McGraw Hill, NewYork, USA (2003)Search in Google Scholar

35 ICARUS Reference: Chapter 4, 3rd Edition, Icarus Corporation, USA (1998)Search in Google Scholar

Published Online: 2017-11-21
Published in Print: 2017-11-15

© 2017, Carl Hanser Verlag, München

Downloaded on 24.5.2024 from https://www.degruyter.com/document/doi/10.3139/120.111105/html
Scroll to top button