Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 29, 2016

Mode II delamination of woven mengkuang fiber/woven silk laminated hybrid composites

Modus II Delamination von mit Mengkuan-Fasergewebe und Seidengewebe laminierten Hybridkompositen
  • Mohd Azwan Husin , Rozli Zulkifli , Shahrum Abdullah and Wan Ramli Wan Daud
From the journal Materials Testing

Abstract

The effects of hybridization between woven mengkuang fiber/woven silk on mode II delamination (GIIC) of laminated composites were investigated by performing the end-notched flexure (ENF) test. Various configurations of woven mengkuang/woven silk layers were considered. The composite samples were prepared using hand lay-up, along with the cold press method. After fabrication, the test specimens were subjected to end-notch flexure testing for mode II delamination based on ASTM D790-03. During the test, the crack propagation was observed; the sudden drop in load meant that the sample experienced crack growth. The configuration of woven silk in between the pre-crack provided an excellent improvement in GIIC. Further addition of woven silk layers for similar configuration also yielded significant improvements in the GIIC result. The rate of critical strain energy release increases with an increase in number of woven silk layers for the configuration of silk in between the pre-crack. The scanning electronic microscopy (SEM) result shows the cross-section of the samples. The study also demonstrated that surface interaction between woven silk/epoxy/woven silk was better than woven mengkuang/epoxy/woven mengkuang lamination.

Kurzfassung

Für den vorliegenden Beitrag wurden die Auswirkungen der Hybridisierung zwischen gewebter Mengkuan-Faser und gewebter Seide auf die Modus II Delaminierung (GIIC) von laminierten Kompositen untersucht, indem der sogenannte End-Notched Flexure-Test (ENF) (Endkerb-Biegeversuch) angewandt wurde. Hierzu wurden verschiedene Konfigurationen der Lagen aus gewebter Seide und gewebter Mengkuan-Faser verwendet. Die Kompositproben wurden mittels manueller Lagentechnik zusammen mit dem Kaltpressverfahren vorbereitet. Nach der Herstellung wurden die Prüfstücke dem ENF-Test zur Prüfung der Modus II Delamination nach dem Standard ASTM D790-03 unterzogen. Während des Tests wurde der Rissfortschritt beobachtet. Eine abrupte Abnahme der Kraft bedeutete, dass die Probe Risswachstum erfuhr. Die Konfiguration der gewebten Seide zwischen dem Anriss ergab eine exzellente Verbesserung in Bezug auf die Größe GIIC. Die weitere Zugabe von gewebten Seidenlagen für eine ähnliche Konfiguration ergab ebenfalls signifikante Verbesserungen des Ergebnisses bezüglich der Größe GIIC. Die Abnahmrate der kritischen Verformungsenergie nahm mit steigender Zahl der gewebten Seidenlagen für die Konfiguration der Seide zwischen dem Anriss zu. Die Ergebnisse der Rasterelektronenmikroskopie lieferten die Querschnitte der Proben. Die Studie zeigte auch, dass die Oberflächeninteraktion zwischen der Seidengewebe/Epoxydharz/Seidengewebe-Laminierung besser als die Mengkuangewebe/Epoxydharz/Mengkuangewebe-Laminierung ist.


*Correspondence Address, Assoc. Prof. Dr. Rozli Zulkifli, Centre for Automotive Research, Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia, Bangi, Selangor, Malaysia. E-mail:

Mohd Azwan bin Husin has graduated with a B. Eng. in Mechanical Engineering from the University Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia. Currently, he is pursuing his Master degree in Mechanics and Materials (natural fiber reinforced laminated composites) in the Fuel Cell Institute, UKM.

Dr. Rozli Zulkifli is Associate Professor in the Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia (UKM) in Bangi, Selangor, Malaysia. He received his B. Eng. (Hons) in Mechanical Engineering and MSc in Advanced Engineering Materials from University of Liverpool, United Kingdom in 1994 and 1996, respectively. Later he received his PhD in Mechanical and Materials Engineering from the University Kebangsaan Malaysia (UKM).

Dr. Shahrum Abdullah is Professor in the Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia. He holds a B. Eng. (Hons) in Mechanical Engineering from that university, a Master of Science from Loughborough University, United Kingdom, and received his PhD from the University of Sheffield, United Kingdom in 2005.

Prof. Dato’ Ir. Dr. Wan Ramli Wan Daud FASc is the Founding Director of The Fuel Cell Institute, University Kebangsaan Malaysia (UKM) since 2007 in recognition of his major contributions in the science and technology of fuel cells. He is, Professor of Chemical Engineering in the Department of Chemical & Process Engineering, Faculty of Engineering & Built Environment, UKM since 1996. He received his BEng (first class honors) from University of Monash, Victoria, Australia in Chemical Engineering in 1978, and his PhD from University of Cambridge, United Kingdom in Chemical Engineering in 1984. He joined UKM in 1979 as a tutor and was later appointed a lecturer in 1984 on his return from Cambridge. He was elected a fellow of the prestigious Academy of Science Malaysia on 28th April 2012 in recognition of his excellent contributions to science.


References

1 R. M. N.Arib, S. M.Sapuan, M. M. H. M.Ahmad, M. T.Paridah, H. M.Zaman: Mechanical properties of pineapple leaf fibre reinforced polypropylene composites, Materials and Design27 (2006), No. 5, pp. 39139610.1016/j.matdes.2004.11.009Search in Google Scholar

2 A.Athijayamani, M.Thiruchitrambalam, U.Natarajan, B.Pazhanivel: Effect of moisture absorption on the mechanical properties of randomly oriented natural fibers/polyester hybrid composite, Materials Science and Engineering A517 (2009), No. 1–2, pp. 34435310.1016/j.msea.2009.04.027Search in Google Scholar

3 I. M.De Rosa, C.Santulli, F.Sarasini, M.Valente: Post-impact damage characterization of hybrid configurations of jute/glass polyester laminates using acoustic emission and IR thermography, Composites Science and Technology69 (2009), No. 6–7, pp. 1142115010.1016/j.compscitech.2009.02.011Search in Google Scholar

4 R.Eshkoor, U.Ude, S.Oshkovr, B.Sulong, R.Zulkifli, K.Ariffin, C. H.Azhari: Failure mechanism of woven natural silk/epoxy rectangular composite tubes under axial quasi-static crushing test using trigger mechanism, International Journal of Impact Engineering64 (2014), pp. 536110.1016/j.ijimpeng.2013.09.004Search in Google Scholar

5 M.Jawaid, H. P. S. AbdulKhalil: Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review, Carbohydrate Polymers86 (2011), No. 1, pp. 11810.1016/j.carbpol.2011.04.043Search in Google Scholar

6 S.Joshi, L.Drzal, A.Mohanty, S.Arora: Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A35 (2004) No. 3, pp. 37137610.1016/j.compositesa.2003.09.016Search in Google Scholar

7 M.Khan, J.Ganster, H.-P.Fink: Hybrid composites of jute and man-made cellulose fibers with polypropylene by injection moulding, Composites Part A40 (2009), No. 6–7, pp. 84685110.1016/j.compositesa.2009.04.015Search in Google Scholar

8 K.Kong, M.Hejda, R.Young, S. J.Eichhorn: Deformation micromechanics of a model cellulose/glass fibre hybrid composite, Composites Science and Technology, 69 (2009), No. 13, pp. 2218222410.1016/j.compscitech.2009.06.006Search in Google Scholar

9 J.Perez-Rigueiro, C.Viney, J.Llorca, M.Elices: Mechanical properties of singlebrin silkworm silk, Journal of Applied Polymer Science75 (2000), pp. 1270127710.1002/(SICI)1097-4628(20000307)75:10<1270::AID-APP8>3.0.CO;2-CSearch in Google Scholar

10 M. S. S.Prasad, C. S.Venkatesha, T.Jayaraju: Experimental methods of determining fracture toughness of fiber reinforced polymer composites under various loading conditions, Journal of Minerals and Materials Characterization and Engineering10 (2010), No. 13, pp. 1263127510.4236/jmmce.2011.1013099Search in Google Scholar

11 R. M.Sheltami, I.Abdullah, I.Ahmad, A.Dufresne, H.Kargarzadeh: Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius), Carbohydrate Polymers88 (2012), No. 2, pp. 77277910.1016/j.carbpol.2012.01.062Search in Google Scholar

12 R.Zulkifli, C. H.Azhari, M. J.Ghazali, A. R.Ismail, A. B.Sulong: Interlaminar fracture toughness of multi-layer woven silk/epoxy composites treated with coupling agent, European Journal of Scientific Research27 (2009), No. 3, pp. 454462Search in Google Scholar

13 A. U.Ude, R.Eshkoor, R.Zulkifili, A.Ariffin, A. W.Dzuraidah, C. H.Azhari: Bombyx mori silk fibre and its composite: A review of contemporary developments, Materials & Design57 (2014), pp. 29830510.1016/j.matdes.2013.12.052Search in Google Scholar

14 ASTM D790-03: Standard Test Methods for Testing Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Material, ASTM, USA (2003)Search in Google Scholar

Published Online: 2016-03-29
Published in Print: 2016-04-04

© 2016, Carl Hanser Verlag, München

Downloaded on 4.6.2024 from https://www.degruyter.com/document/doi/10.3139/120.110860/html
Scroll to top button