Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 9, 2018

Synergistic Effect of Saponin and Rhamnolipid Biosurfactants Systems on Foam Behavior

Synergistische Wirkung von Saponin- und Rhamnolipid-Biotensid-Systemen auf das Schaumverhalten
  • Reza Hajimohammadi and Safa Johari-Ahar

Abstract

In this study, the synergistic effect of saponin and rhamnolipid biosurfactant on foam properties at an air-water interface was investigated. In order to reach the optimum hydrophilic lipophilic balance (HLB) value, samples of 2 wt% of rhamnolipid and saponin biosurfactants with different HLB values (9.6, 10, 10.4, 10.8, 11.2, 11.6, and 12) in 5 ml of DI water were prepared. Results showed that the optimum HLB value of the microemulsion system was 10.8 for the mixture of 84% rhamnolipid and 16% saponin. At that optimum HLB value and a total surfactant concentration of 2 wt%, the maximum foaming ability and foam stability of the mixed system was 48 mm and 72 min respectively. During the experiment, it was observed that at optimum HLB value the foaming ability of the system increased by increasing the concentration of rhamnolipid and saponin. Comparing the foaming ability and foam stability of biosurfactant system with the properties of SDS, Tween80 and Span80 showed that the biosurfactants have a good foaming ability. The CMC value of the biosurfactant mixtures at the optimum HLB value was lower than that of other synthetic surfactants. The results show that, the biosurfactant mixtures had a synergistic effect on foaming ability and foam stability compared to the individual biosurfactants and synthetic surfactants. Therefore, the mixture of rhamnolipid and saponin is proposed as a potential alternative for detergent, cosmetic and petroleum industry.

Kurzfassung

In dieser Studie wurde der synergistische Effekt der Biotenside Saponin und Rhamnolipid auf die Schaumbildung an der Luft-Wasser-Grenzfläche untersucht. Um den optimalen Wert der hydrophilen lipophilen Balance (HLB) zu erreichen, wurden Proben mit 2 Gew.-% Rhamnolipid und Saponin mit verschiedenen HLB-Werten (9,6, 10, 10,4, 10,8, 11,2, 11,6 und 12) in 5 ml DI-Wasser hergestellt. Die Ergebnisse zeigten, dass bei einer Mischung aus 84% Rhamnolipid und 16% Saponin der optimale HLB-Wert für das Mikroemulsionssystem 10,8 betrug. Bei diesem optimalen HLB-Wert und einer Mischungskonzentration von 2 Gew.-% lag die maximale Schaumhöhe bei 48 mm und die Schaumstabilität des Sytems bei 72 min. Während des Experiments wurde beobachtet, dass bei optimalem HLB-Wert das Schaumvermögen des Systems durch Erhöhung der Konzentration von Rhamnolipid und Saponin anstieg. Ein Vergleich des Schaumvermögens und der Stabilität des Biotensidsystems mit den Eigenschaften der Systeme mit SDS, Tween80 und Span80 zeigte, dass die Biotenside ein gutes Schaumbildungsvermögen aufweisen. Der CMC-Wert der Biotensidmischungen beim optimalen HLB-Wert war niedriger als der der anderen synethischen Tenside. Die Ergebnisse zeigen, dass die Biotensidtensidmischungen eine synergistische Wirkung auf das Schaumbildungsvermögen und die Schaumstabilität im Vergleich zu den einzelnen Biotensiden und den synthetischen Tensiden hatten. Daher wird die Mischung von Rhamnolipid und Saponin als mögliche Alternative für die Waschmittel-, Kosmetik- und Erdölindustrie vorgeschlagen.


*Correspondence address, Dr. Reza Hajimohammadi, Department of Chemical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran, Tel.: +984144228211, Fax: +984144239758, E-Mail:

Reza Hajimohammadi is assistance professor of Islamic azad university of ahar. His research is mainly involved in nanoemulsions and biosurfactant production and application of biosurfactants in petroleum industries.

Safa Johari-Ahar received DVM (Doctor of Veterinary Medicine) degree from University of Tabriz in 2013. Now, she is a researcher at Nano medical center in university of Tabriz. His research is mainly involved in biomaterial production and application of them in medical science.


References

1. Karanth, N. G. K., Deo, P. G. and Veenanadig, N. K.: Microbial production of biosurfactants and their importance; Current Science77 (1999) 116126. 10.3002/stle/24102919Search in Google Scholar

2. Bureiko, A., Trybala, A., Kovalchuk, N. and Starov, V.: Current applications of foams formed from mixed surfactant–polymer solutions; Advances in Colloid and Interface Science222 (2015) 670677. 25455806 10.1016/j.cis.2014.10.001Search in Google Scholar PubMed

3. Horozov, T. S.: Foams and foam films stabilised by solid particles; Current Opinion in Colloid and Interface Science13 (2008) 134140. 10.1016/j.cocis.2007.11.009Search in Google Scholar

4. Schramm, L. L., Stasiuk, E. N. and Marangoni, D. G.: 2 Surfactants and their applications; Annual Reports Section C (Physical Chemistry)99 (2003) 348. 10.1039/B208499FSearch in Google Scholar

5. Zhou, Z. H., Zhang, L., Xu, Z. C., Zhang, L., Zhao, S. and Yu, J. Y.: Surface dilational properties and foam properties of novel benzene sulfonate surfactants; Journal of Dispersion Science and Technology32 (2010) 95101. 10.1080/01932690903543162Search in Google Scholar

6. Palla, B. J. and Shah, D. O.: Stabilization of high ionic strength slurries using the synergistic effects of a mixed surfactant system; Journal of Colloid and Interface Science223 (2000) 102111. 10684673 10.1006/jcis.1999.6665Search in Google Scholar PubMed

7. Coelho, E., Reis, A., Domingues, M. R. M., Rocha, S. M. and Coimbra, M. A.: Synergistic effect of high and low molecular weight molecules in the foamability and foam stability of sparkling wines; Journal of agricultural and food chemistry59 (2011) 31683179. 21375299 10.1021/jf104033cSearch in Google Scholar PubMed

8. Ilori, M. O., Amobi, C. J. and Odocha, A. C.: Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment:. Chemosphere61 (2005) 985992. 15878609 10.1016/j.chemosphere.2005.03.066Search in Google Scholar PubMed

9. Singh, A., Van Hamme, J. D. and Ward, O. P.: Surfactants in microbiology and biotechnology: Part 2. Application aspects; Biotechnology advances25 (2007) 99121. 17156965 10.1016/j.biotechadv.2006.10.004Search in Google Scholar PubMed

10. Franzetti, A., Gandolfi, I., Bestetti, G., Smyth, T. J. and Banat, I. M.: Production and applications of trehalose lipid biosurfactants; European Journal of Lipid Science and Technology112 (2010) 617627. 10.1002/ejlt.200900162Search in Google Scholar

11. Maier, R. M. and Soberon-Chavez, G.: Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications; Applied Microbiology and Biotechnology54 (2000) 625633. 11131386 10.1007/s002530000Search in Google Scholar

12. Kregiel, D., Berlowska, J., Witonska, I., Antolak, H., Proestos, C., Babic, M. and Zhang, B.: Saponin-Based, Biological-Active Surfactants from Plants; In Application and Characterization of Surfactants. InTech. 10.5772/68062Search in Google Scholar

13. Avato, P., Bucci, R., Tava, A., Vitali, C., Rosato, A., Bialy, Z. and Jurzysta, M.: Antimicrobial activity of saponins from Medicago sp.: structure-activity relationship; Phytotherapy Research20 (2006) 454457. 16619355 10.1002/ptr.1876Search in Google Scholar PubMed

14. Nitschke, M., Costa, S. G. and Contiero, J.: Structure and applications of a rhamnolipid surfactant produced in soybean oil waste; Applied biochemistry and biotechnology160 (2010) 20662074. 19649781 10.1007/s12010-009-8707-8Search in Google Scholar PubMed

15. Hajimohammadi, R., Hosseini, M., Amani, H. and Darzi, G. N.: Experimental Design Procedure for Optimization of Saponin Extraction from Glycyrrhiza glabra: A Biosurfactant for Emulsification of Heavy Crude Oil; Tenside Surfactants Detergents54 (2017) 308314. 10.3139/113.110506Search in Google Scholar

16. Soberón-Chávez, G., Lépine, F. and Déziel, E.: Production of rhamnolipids by Pseudomonas aeruginosa; Applied microbiology and biotechnology68 (2005) 718725. 16160828 10.1007/s00253-005-0150-3Search in Google Scholar PubMed

17. Burch, A. Y., Shimada, B. K., Browne, P. J. and Lindow, S. E.: Novel high-throughput detection method to assess bacterial surfactant production. Applied and environmental microbiology76 (2010) 53635372. 20562275 10.1128/AEM.00592-10Search in Google Scholar PubMed PubMed Central

18. Wang, L. and Xia, P.: Evaluating the hudrophilic and lipophilic balance (HLB) value of tea saponin from its chemical sturacture, Natural Product Research and Development2 (1990). 10.1234/005Search in Google Scholar

19. Ruckmani, K., Jayakar, B. and Ghosh, S. K.: Nonionic surfactant vesicles (niosomes) of cytarabine hydrochloride for effective treatment of leukemias: encapsulation, storage, and in vitro release, Drug development and industrial pharmacy26 (2000) 217222. 10697760 10.1081/DDC-100100348Search in Google Scholar

20. Miraglia, D. B., Rodríguez, J. L., Minardi, R. M. and Schulz, P. C.: Critical micelle concentration and HLB of the sodium oleate–hexadecyltrimethylammonium bromide mixed system; Journal of Surfactants and Detergents14 (2011) 401408. 10.1007/s11743-010-1239-ySearch in Google Scholar

21. Rizzo, C., Michaud, L., Hörmann, B., Gerçe, B., Syldatk, C., Hausmann, R. and Giudice, A. L.: Bacteria associated with sabellids (Polychaeta: Annelida) as a novel source of surface active compounds; Marine pollution bulletin70 (2013). 125133. 10.1016/j.marpolbul.2013.02.020Search in Google Scholar PubMed

22. Wu, J.: Greener Surface Active Reagents: Structure, Property and Performance Relationships, PhD diss., Columbia University, 2013.Search in Google Scholar

23. Wang, J., Yang, F., Tan, J., Liu, G., Xu, J. and Sun, D.: Pickering emulsions stabilized by a lipophilic surfactant and hydrophilic platelike particles; Langmuir26 (2009) 53975404. 10.1021/la903817bSearch in Google Scholar PubMed

24. Urum, K. and Pekdemir, T.: Evaluation of biosurfactants for crude oil contaminated soil washing; Chemosphere57 (2004) 11391150. 10.1016/j.2004.07.048Search in Google Scholar

25. Rahman, P. K., Pasirayi, G., Auger, V. and Ali, Z.: Production of rhamnolipid biosurfactants by Pseudomonas aeruginosa DS10-129 in a microfluidic bioreactor; Biotechnology and applied biochemistry55 (2010) 4552. 10.1042/BA20090277Search in Google Scholar PubMed

26. Cifuentes, A., Bernal, J. L. and Diez-Masa, J. C.: Determination of critical micelle concentration values using capillary electrophoresis instrumentation; Analytical Chemistry69 (1997) 42714274. 10.1021/ac970696nSearch in Google Scholar

Received: 2017-09-10
Accepted: 2017-11-15
Published Online: 2018-03-09
Published in Print: 2018-03-16

© 2018, Carl Hanser Publisher, Munich

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.3139/113.110546/html
Scroll to top button