Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 9, 2017

Oil-Water Interfacial Tensions of Silica Nanoparticle-Surfactant Formulations

Öl-Wasser-Grenzflächenspannungen von Siliciumdioxid-Nanopartikel-Tensid-Formulierungen
  • Sarmad Al-Anssari , Shaobin Wang , Ahmed Barifcani and Stefan Iglauer

Abstract

The implementation of nanotechnology in all industries is one of most significant research fields. Nanoparticles have shown a promising application in subsurface fields. On the other hand, various surfactants have been used in the oil industry to reduce oil/water interfacial tension and also widely used to stabilize the nano-suspensions. The primary objective of this study was to investigate the improvements of surfactants ability in term of interfacial tension (γ) reduction utilizing addition of silicon dioxide nanoparticles at different temperatures and salinity. The pendant drop technique has been used to measure γ and electrical conductivity has been used to measure the critical micelle concentration (CMC). The synergistic effects of surfactant-nanoparticles, salt-nanoparticles, and surfactant-salt-nanoparticles on γ reduction and the critical micelle concentration of the surfactants have been investigated. Extensive series of experiments for γ and CMC measurements were performed. The optimum condition for each formulation is shown. We conclude that nanoparticles-surfactant can significantly reduce γ if correctly formulated.

Kurzfassung

Die Einführung der Nanotechnologie in allen Branchen ist eines der bedeutendsten Forschungsfelder. Nanopartikel haben vielversprechende Anwendungen in unterirdischen Bereichen gezeigt. Andererseits wurden verschiedene Tenside in der Ölindustrie verwendet, um die Öl/Wasser-Grenzflächenspannung zu reduzieren und häufig auch zur Stabilisierung von Nanosuspensionen verwendet. Das primäre Ziel dieser Studie war es, die Fähigkeit der Tenside im Hinblick auf die Reduktion der Grenzflächenspannung (γ) unter Zugabe von Siliciumdioxid-Nanopartikel bei verschiedenen Temperaturen und Salzgehalt zu verbessern. Die Pendant-Drop-Technik wurde verwendet, um die Grenzflächenspannung zu messen, und die elektrische Leitfähigkeit wurde verwendet, um die kritische Mizellenbildungskonzentration (CMC) zu bestimmen. Die synergistischen Effekte von Tensid-Nanopartikel, Salz-Nanopartikel und Tensid-Salz-Nanopartikel auf die Reduktion der Grenzflächenspannung und die CMC der Tenside wurden bestimmt. Es wurden umfangreiche Versuchsreihen zur Messung von γ und der CMC durchgeführt. Für jede Formulierung ist eine optimale Bedingung aufgestellt. Wir schließen daraus, dass Nanopartikel-Tensid-Formulierungen die Grenzflächenspannung signifikant reduzieren können, wenn sie richtig formuliert sind.


*Correspondence address, Dr. Sarmad Al-nssari, aDepartment of Chemical Engineering, Curtin University, Kent Street, 6102 Bentley, Australia, bDepartment of Chemical Engineering, University of Baghdad, Iraq, E-Mail: ,

Sarmad Al-Anssari has earned a bachelor's and master's degree in chemical engineering from University of Baghdad and he worked as a faculty member in the same university for more than 10 years. Currently he is a Ph.D. student in Chemical Engineering at Curtin University, WA, Australia. His research interest is on different applications of nanoparticles and nanofluids in different disciplines, including wettability alteration, enhanced oil recovery, and carbon capture and storage.

Shaobin Wang is a Professor at Curtin University, Perth, Australia, in the Department of Chemical Engineering. He has around 315 publications. His research interests center on nanocomposites, adsorption, oxidation, photocatalysts and wastewater treatment.

Ahmed Barifcani has BSc, MSc & PhD degrees in chemical engineering from University of Birmingham UK. He is working as an Associate Professor in the Department of Petroleum Engineering, at Curtin University, WA since 2006. He is a fellow and a Chartered Scientist of the institution of chemical engineers (FIChemE & CSci). He has many publication on flow assurance, LNG enhanced oil recovery, CO2 capture and storage. He holds over 30 years of industrial experience in operation design, engineering, construction, project management, research & development in the fields of oil refining, gas processing, petrochemicals, flow assurance and CO2 capture.

Stefan Iglauer holds a PhD degree in material science from Oxford Brookes University (UK) and MSc degree in chemistry from the University of Paderborn (Germany). He is an Associate Professor at Curtin University, Perth, Australia, in the Department of Petroleum Engineering. His research interests are in CO2 geo-storage, wettability, and multi-phase flow through porous rock with a particular focus on atomic to pore-scale processes. Stefan has authored more than 90 technical publications.


References

1. Tong, R., Hemmati, H. D., Langer, R. and Kohane,D. S.: Photoswitchable Nanoparticles for Triggered Tissue Penetration and Drug Delivery, J. Am. Chem. Soc.134 (2012) 88488855.PMid:22385538; 10.1021/ja211888aSearch in Google Scholar PubMed PubMed Central

2. Baeckkyoung, S., Se HoonK., Sungwoo, L., Jaekwan, L., Jin-KyuL. and Kwang-Sup, S.: Nanofluid transport in a living soft microtube, J. Phys. D: Appl. Phys.48 (2015) 345402. 10.1088/0022-3727/48/34/345402Search in Google Scholar

3. Lohse, S. E., Murphy, C. J.: Applications of Colloidal Inorganic Nanoparticles: From Medicine to Energy, J. Am. Chem. Soc.134 (2012) 1560715620.PMid:22934680; 10.1021/ja307589nSearch in Google Scholar PubMed

4. ShamsiJazeyi, H., Miller, C. A., Wong, M. S., Tour, J. M. and Verduzco, R.: Polymer-coated nanoparticles for enhanced oil recovery, J. Appl. Polym. Sci.131 (2014) 113. 10.1002/app.40576Search in Google Scholar

5. Lu, G., Duan, Y. Y. and Wang, X. D.: Surface tension, viscosity, and rheology of water-based nanofluids: a microscopic interpretation on the molecular level, J. Nanopart. Res.16 (2014) 111. 10.1007/s11051-014-2564-2Search in Google Scholar

6. Wang, H., Yan, N., Li, Y., Zhou, X., Chen, J., Yu, B. and Gong, M.: Fe nanoparticle-functionalized multi-walled carbon nanotubes: one-pot synthesis and their applications in magnetic removal of heavy metal ions, J. Mater. Chem.22 (2012) 92309236. 10.1039/C2JM16584HSearch in Google Scholar

7. Al-Anssari, S., Barifcani, A., Wang, S., Lebedev, M. and Iglauer, S.: Wettability alteration of oil-wet carbonate by silica nanofluid, J. Colloid Interface Sci.461 (2016) 435442.PMid:26414426; 10.1016/j.jcis.2015.09.051Search in Google Scholar PubMed

8. Nwidee, L. N., Al-Anssari, S., Barifcani, A., Sarmadivaleh, M. and Iglauer, S.: Nanofluids for Enhanced Oil Recovery Processes: Wettability Alteration Using Zirconium Oxide, Offshore Technology Conference Asia. Kuala Lumpur, Malaysia2016. 10.4043/26573-MSSearch in Google Scholar

9. Chakraborty, S. and Padhy, S.: Anomalous Electrical Conductivity of Nanoscale Colloidal Suspensions, ACS Nano2 (2008) 20292036.PMid:19206448; 10.1021/nn800343 hSearch in Google Scholar

10. Branson, B. T., Beauchamp, P. S., Beam, J. C., Lukehart, C. M. and Davidson,J. L.: Nanodiamond Nanofluids for Enhanced Thermal Conductivity, ACS Nano7 (2013) 31833189.PMid:23488739; 10.1021/nn305664xSearch in Google Scholar PubMed

11. Wu, S., Nikolov, A. and Wasan, D.: Cleansing dynamics of oily soil using nanofluids, J. Colloid Interface Sci.396 (2013) 293306.PMid:23484768; 10.1016/j.jcis.2013.01.036Search in Google Scholar PubMed

12. Taylor, R., Coulombe, S., Otanicar, T., Phelan, P., Gunawan, A., Lv, W. and Rosengarten, G.: Small particles, big impacts: A review of the diverse applications of nanofluids, J. Appl. Phys.113 (2013) 011301. 10.1063/1.4754271 Search in Google Scholar

13. Fan, H., Resasco, D. E. and Striolo, A.: Amphiphilic Silica Nanoparticles at the Decane–Water Interface: Insights from Atomistic Simulations, Langmuir27 (2011) 52645274.PMid:21449581; 10.1021/la200428rSearch in Google Scholar PubMed

14. Iglauer, S., Wu, Y., Shuler, P., Tang, Y. and GoddardIII, W. A.: Alkyl polyglycoside surfactant–alcohol cosolvent formulations for improved oil recovery, Colloids Surf., A: Physicochemical and Engineering Aspects339 (2009) 4859. 10.1016/j.colsurfa.2009.01.015Search in Google Scholar

15. Iglauer, S., Wu, Y., Shuler, P., Tang, Y. and GoddardIII, W. A.: New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential, Journal of Petroleum Science and Engineering71 (2010) 2329. 10.1016/j.petrol.2009.12.009Search in Google Scholar

16. Hendraningrat, L., Li, S. and Torsæter,O.: A coreflood investigation of nanofluid enhanced oil recovery, Journal of Petroleum Science and Engineering111 (2013) 128138. 10.1016/j.petrol.2013.07.003Search in Google Scholar

17. Chol, S. and Eastman, J. A.: Enhancing thermal conductivity of fluids with nanoparticles, ASME-Publications-Fed231 (1995) 99106.Search in Google Scholar

18. Okubo, T.: Surface Tension of Structured Colloidal Suspensions of Polystyrene and Silica Spheres at the Air-Water Interface, J. Colloid Interface Sci.171 (1995) 5562. 10.1006/jcis.1995.1150Search in Google Scholar

19. Dong, L. and Johnson, D.: Surface Tension of Charge-Stabilized Colloidal Suspensions at the Water–Air Interface, Langmuir19 (2003) 1020510209. 10.1021/la035128jSearch in Google Scholar

20. Vignati, E., Piazza, R. and Lockhart, T. P.: Pickering Emulsions: Interfacial Tension, Colloidal Layer Morphology, and Trapped-Particle Motion. Langmuir19 (2003) 66506656. 10.1021/la034264lSearch in Google Scholar

21. Saleh, N., Sarbu, T., Sirk, K., Lowry, G. V., Matyjaszewski, K. and Tilton, R. D.: Oil-in-Water Emulsions Stabilized by Highly Charged Polyelectrolyte-Grafted Silica Nanoparticles, Langmuir21 (2005) 98739878.PMid:16229503; 10.1021/la050654rSearch in Google Scholar PubMed

22. Blute, I., Pugh, R. J., van de Pas, J. and Callaghan, I.: Industrial manufactured silica nanoparticle sols. 2: Surface tension, particle concentration, foam generation and stability, Colloids and Surfaces A337 (2009) 127135. 10.1016/j.colsurfa.2008.12.009Search in Google Scholar

23. Kim, W., Kang, H. U., Jung, K. and Kim, S. H.: Synthesis of Silica Nanofluid and Application to CO2 Absorption, Sep. Sci. Technol. (Philadelphia, PA, U.S.)43 (2008) 30363055. 10.1080/01496390802063804Search in Google Scholar

24. Ponmani, S., Nagarajan, R. and Sangwai, J. S.: Effect of Nanofluids of CuO and ZnO in Polyethylene Glycol and Polyvinylpyrrolidone on the Thermal, Electrical, and Filtration-Loss Properties of Water-Based Drilling Fluids, SPE Journal21 (2016) 405415. 10.2118/178919-PASearch in Google Scholar

25. Vatanparast, H., Alizadeh, A. H., Bahramian, A. and Bazdar, H.: Wettability Alteration of Low-permeable Carbonate Reservoir Rocks in Presence of Mixed Ionic Surfactants, Petroleum Science and Technology29 (2011) 18731884. 10.1080/10916461003610389Search in Google Scholar

26. Wang, L. and Mohanty, K.: Enhanced Oil Recovery in Gasflooded Carbonate Reservoirs by Wettability-Altering Surfactants, SPE Journal20 (2014) 6069. 10.2118/166283-PASearch in Google Scholar

27. Bera, A., Mandal, A. and Guha, B. B.: Synergistic Effect of Surfactant and Salt Mixture on Interfacial Tension Reduction between Crude Oil and Water in Enhanced Oil Recovery, J. Chem. Eng. Data59 (2014) 8996. 10.1021/je400850cSearch in Google Scholar

28. Bera, A., Kumar, T., Ojha, K. and Mandal, A.: Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies, Appl. Surf. Sci.284 (2013) 8799. 10.1016/j.apsusc.2013.07.029Search in Google Scholar

29. Ma, H., Luo, M. and Dai, L. L.: Influences of surfactant and nanoparticle assembly on effective interfacial tensions, Phys. Chem. Chem. Phys.10 (2008) 22072213.PMid:18404227; 10.1039/B718427CSearch in Google Scholar PubMed

30. Mandal, A. and Bera, A.: Surfactant Stabilized Nanoemulsion: Characterization and Application in Enhanced Oil Recovery, World Academy of Science, Eng. Technol. (WASET) International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering6 (2012) 537542. (NO DOI). scholar.waset.org/1999.2/10032.Search in Google Scholar

31. Esmaeilzadeh, P., Hosseinpour, N., Bahramian, A., Fakhroueian, Z. and Arya, S.: Effect of ZrO2 nanoparticles on the interfacial behavior of surfactant solutions at air-water and n-heptane-water interfaces, Fluid Phase Equilib.361 (2014) 289295. 10.1016/j.fluid.2013.11.014Search in Google Scholar

32. Zargartalebi, M., Barati, N. and Kharrat, R.: Influences of hydrophilic and hydrophobic silica nanoparticles on anionic surfactant properties: Interfacial and adsorption behaviors, Journal of Petroleum Science and Engineering119 (2014) 3643. 10.1016/j.petrol.2014.04.010Search in Google Scholar

33. Biswal, N. R., Rangera, N. and Singh, J. K.: Effect of Different Surfactants on the Interfacial Behavior of the n-Hexane–Water System in the Presence of Silica Nanoparticles, J. Phys. Chem. B120 (2016) 72657274.PMid:27367433; 10.1021/acs.jpcb.6b03763Search in Google Scholar

34. CaiB.Y., Yang, J. T. and Guo, T. M.: Interfacial Tension of Hydrocarbon + Water/Brine Systems under High Pressure, J. Chem. Eng. Data41 (1996) 493496. 10.1021/je950259aSearch in Google Scholar

35. Al-Sahhaf, T., Elkamel, A., Suttar Ahmed, A. and Khan, A. R.: The Influence of Temperature, Pressure, Salinity, and Surfactant Concentration on the Interfacial Tension of the N-Octane-Water System, Chem. Eng. Commun.192 (2005) 667684. 10.1080/009864490510644Search in Google Scholar

36. Hamouda, A. and Karoussi, O.: Effect of Temperature, Wettability and Relative Permeability on Oil Recovery from Oil-wet Chalk, Energies (Basel, Switz.)1 (2008) 1934. 10.3390/en1010019Search in Google Scholar

37. Sharma, T., Kumar, G. S., Chon, B. H. and Sangwai, J. S.: Thermal stability of oil-in-water Pickering emulsion in the presence of nanoparticle, surfactant, and polymer, J. Ind. Eng. Chem. (Amsterdam, Neth.)22 (2015) 324334. 10.1016/j.jiec.2014.07.026Search in Google Scholar

38. Atkin, R., Craig, V. S. J., Wanless, E. J. and Biggs, S.: Mechanism of cationic surfactant adsorption at the solid–aqueous interface, Adv. Colloid Interface Sci.103 (2003) 219304. 10.1016/S0001-8686(03)00002-2Search in Google Scholar

39. Zargartalebi, M., Kharrat, R. and Barati, N.: Enhancement of surfactant flooding performance by the use of silica nanoparticles, Fuel143 (2015) 2127. 10.1016/j.fuel.2014.11.040Search in Google Scholar

40. Lan, Q., Yang, F., Zhang, S., Liu, S., Xu, J. and Sun, D.: Synergistic effect of silica nanoparticle and cetyltrimethyl ammonium bromide on the stabilization of O/W emulsions, Colloids Surf. A302 (2007) 126135. 10.1016/j.colsurfa.2007.02.010Search in Google Scholar

41. Mahdi Jafari, S., He, Y. and Bhandari, B.: Nano-Emulsion Production by Sonication and Microfluidization–A Comparison, Int. J. Food Prop.9 (2006) 475485. 10.1080/10942910600596464Search in Google Scholar

42. Petzold, G., Rojas-Reyna, R., Mende, M. and Schwarz, S.: Application Relevant Characterization of Aqueous Silica Nanodispersions, J. Dispersion Sci. Technol.30 (2009) 12161222. 10.1080/01932690802701887Search in Google Scholar

43. Shen, M. and Resasco, D. E.: Emulsions Stabilized by Carbon Nanotube–Silica Nanohybrids, Langmuir25 (2009) 1084310851.PMid:19735138; 10.1021/la901380bSearch in Google Scholar

44. Mondragon, R., Julia, J. E., Barba, A. and Jarque, J. C.: Characterization of silica–water nanofluids dispersed with an ultrasound probe: A study of their physical properties and stability, Powder Technology224 (2012) 138146. 10.1016/j.powtec.2012.02.043Search in Google Scholar

45. Franks, G. V.: Zeta Potentials and Yield Stresses of Silica Suspensions in Concentrated Monovalent Electrolytes: Isoelectric Point Shift and Additional Attraction, J. Colloid Interface Sci.249 (2002) 4451.PMid:16290567; 10.1006/jcis.2002.8250Search in Google Scholar

46. Amiri, A., Øye, G. and Sjöblom,J.: Influence of pH, high salinity and particle concentration on stability and rheological properties of aqueous suspensions of fumed silica, Colloids and Surfaces A349 (2009) 4354. 10.1016/j.colsurfa.2009.07.050Search in Google Scholar

47. Roger, G. M., Durand-Vidal, S., Bernard, O., Turq, P., Perger, T. M. and Bešter-Rogač,M.: Interpretation of Conductivity Results from 5 to 45°C on Three Micellar Systems below and above the CMC, J. Phys. Chem. B112 (2008) 1652916538.PMid:19368011; 10.1021/jp804971cSearch in Google Scholar

48. Marcolongo, J. P. and Mirenda, M.: Thermodynamics of Sodium Dodecyl Sulfate (SDS) Micellization: An Undergraduate Laboratory Experiment, J. Chem. Educ.88 (2011) 629633. 10.1021/ed900019uSearch in Google Scholar

49. Zendehboudi, S., Ahmadi, M. A., Rajabzadeh, A. R., Mahinpey, N. and Chatzis,I.: Experimental study on adsorption of a new surfactant onto carbonate reservoir samples–application to EOR, Can. J. Chem. Eng.91 (2013) 14391449. 10.1002/cjce.21806Search in Google Scholar

50. Adamson, A. W. and Gast, A. P.: Physical chemistry of surfaces. Sixth Edition ed.: John Wiley1967.Search in Google Scholar

51. Susnar, S. S., Hamza, H. A. and Neumann, A. W.: Pressure dependence of interfacial tension of hydrocarbon–water systems using axisymmetric drop shape analysis, Colloids and Surfaces A89 (1994) 169180. 10.1016/0927-7757(94)80116-9Search in Google Scholar

52. Arif, M., Al-Yaseri, A. Z., Barifcani,A., Lebedev, M. and Iglauer,S.: Impact of pressure and temperature on CO2-brine-mica contact angles and CO2-brine interfacial tension: Implications for carbon geo-sequestration, J. Colloid Interface Sci.462 (2016) 208215.PMid:26454380; 10.1016/j.jcis.2015.09.076Search in Google Scholar PubMed

53. Georgiadis, A., Maitland, G., Trusler, J. P. M. and Bismarck, A.: Interfacial Tension Measurements of the (H2O + CO2) System at Elevated Pressures and Temperatures, J. Chem. Eng. Data55 (2010) 41684175. 10.1021/je100198gSearch in Google Scholar

54. Alvarez, N. J., Walker, L. M. and Anna, S. L.: A non-gradient based algorithm for the determination of surface tension from a pendant drop: Application to low Bond number drop shapes, J. Colloid Interface Sci.333 (2009) 557562.PMid:19261289; 10.1016/j.jcis.2009.01.074Search in Google Scholar

55. Hoff, E., Nyström,B. and Lindman, B.: Polymer–Surfactant Interactions in Dilute Mixtures of a Nonionic Cellulose Derivative and an Anionic Surfactant, Langmuir17 (2001) 2834. 10.1021/la001175pSearch in Google Scholar

56. Zhao, Z., Bi, C., Li, Z., Qiao, W. and Cheng, L.: Interfacial tension between crude oil and decylmethylnaphthalene sulfonate surfactant alkali-free flooding systems, Colloids and Surfaces A276 (2006) 186191. 10.1016/j.colsurfa.2005.10.036Search in Google Scholar

57. Zhang, L., Luo, L., Zhao, S. and Yu, J.: Studies of Synergism/Antagonism for Lowering Dynamic Interfacial Tensions in Surfactant/Alkali/Acidic Oil Systems, Part 2: Synergism/Antagonism in Binary Surfactant Mixtures, J. Colloid Interface Sci.251 (2002) 166171.PMid:16290715; 10.1006/jcis.2002.8293   Search in Google Scholar

58. Bayat, E. A., Junin, R., Ghadikolaei, F. and Piroozian, A.: Transport and aggregation of Al2O3 nanoparticles through saturated limestone under high ionic strength conditions: measurements and mechanisms, J. Nanopart. Res.16 (2014) 112. 10.1007/s11051-014-2747-xSearch in Google Scholar

59. BayatE.A., Junin, R., Samsuri, A., Piroozian, A. and Hokmabadi, M.: Impact of Metal Oxide Nanoparticles on Enhanced Oil Recovery from Limestone Media at Several Temperatures, Energy & Fuels28 (2014) 62556266. 10.1021/ef5013616Search in Google Scholar

60. Ravera, F., Ferrari, M., Liggieri, L., Loglio, G., Santini, E. and Zanobini, A.: Liquid–liquid interfacial properties of mixed nanoparticle–surfactant systems, Colloids and Surfaces A323 (2008) 99108. 10.1016/j.colsurfa.2007.10.017Search in Google Scholar

61. Liu, Y., Tourbin, M., Lachaize, S. and Guiraud, P.: Silica Nanoparticle Separation from Water by Aggregation with AlCl3, Ind. Eng. Chem. Res.51 (2012) 18531863. 10.1021/ie200672tSearch in Google Scholar

62. Gaonkar, A. G.: Effects of salt, temperature, and surfactants on the interfacial tension behavior of a vegetable oil/water system, J. Colloid Interface Sci.149 (1992) 256260. 10.1016/0021-9797(92)90412-FSearch in Google Scholar

63. Vashisth, C., Whitby, C. P., Fornasiero, D. and Ralston, J.: Interfacial displacement of nanoparticles by surfactant molecules in emulsions, J. Colloid Interface Sci.349 (2010) 537543.PMid:20573356; 10.1016/j.jcis.2010.05.089Search in Google Scholar PubMed

64. Iglauer, S., Salamah, A., Sarmadivaleh, M., Liu, K. and Phan, C.: Contamination of silica surfaces: Impact on water–CO2-quartz and glass contact angle measurements, Int. J. Greenhouse Gas Control22 (2014) 325328. 10.1016/j.ijggc.2014.01.006Search in Google Scholar

65. Sharma, T., Kumar, G. S., Sangwai, J. S.: Comparative effectiveness of production performance of Pickering emulsion stabilized by nanoparticle-surfactant-polymerover surfactant-polymer (SP) flooding for enhanced oil recovery for Brownfield reservoir, J. Petroleum Science and Engineering.129 (2015) 221232. 10.1016/j.petrol.2015.03.015Search in Google Scholar

66. Chu, Y. P., Gong, Y., Tan, X. L., Zhang, L., Zhao, S., An, J. Y. and Yu, J. Y.: Studies of synergism for lowering dynamic interfacial tension in sodium α-(n-alkyl) naphthalene sulfonate/alkali/acidic oil systems, J. Colloid Interface Sci.276 (2004) 182187.PMid:15219447; 10.1016/j.jcis.2004.03.007Search in Google Scholar

67. Whitby, C. P., Fornasiero, D. and Ralston, J.: Effect of adding anionic surfactant on the stability of Pickering emulsions, J. Colloid Interface Sci.329 (2009) 173181.PMid:18929369; 10.1016/j.jcis.2008.09.056Search in Google Scholar

68. Metin, C. O., Baran, J. R. and Nguyen, Q. P.: Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface, J. Nanopart. Res.14 (2012) 1246.PMid:23193372; 10.1007/s11051-012-1246-1Search in Google Scholar

69. Xu, W., Ayirala, S. C. and Rao, D. N.: Measurement of Surfactant-Induced Interfacial Interactions at Reservoir Conditions, SPE Journal11 (2008) 8394. 10.2118/96021-PASearch in Google Scholar

70. Alam, M. A., Juraimi, A. S., Rafii, M. Y. and Abdul Hamid, A.: Effect of Salinity on Biomass Yield and Physiological and Stem-Root Anatomical Characteristics of Purslane (Portulaca oleracea L.) Accessions, BioMed Research International2015 (2015) 15.PMid:25802833; 10.1155/2015/105695Search in Google Scholar

71. Gurkov, T. D., Dimitrova, D. T., Marinova, K. G., Bilke-Crause, C., Gerber, C. and Ivanov, I. B.: Ionic surfactants on fluid interfaces: determination of the adsorption; role of the salt and the type of the hydrophobic phase, Colloids and Surfaces A261 (2005) 2938. 10.1016/j.colsurfa.2004.11.040Search in Google Scholar

72. Jennings, J. R. and Harley,Y.: The effect of temperature and pressure on the interfacial tension of benzene-water and normal decane-water, J. Colloid Interface Sci.24 (1967) 323329. 10.1016/0021-9797(67)90257-3Search in Google Scholar

73. Zeppieri, S., Rodríguez, J. and López de RamosA.L.: Interfacial Tension of Alkane + Water Systems, J. Chem. Eng. Data46 (2001) 10861088. 10.1021/je000245rSearch in Google Scholar

74. Handy, L. L., El-Gassier, M. and Ershaghi, I.: A Modified Spinning Drop Method for High-Temperature Applications, SPE Journal23 (1983) 155164. 10.2118/9003-PASearch in Google Scholar

75. Anderson, W. G.: Wettability Literature Survey- Part 1: Rock/Oil/Brine Interactions and the Effects of Core Handling on Wettability, J. Petrol. Technol.38 (1986) 11251144. 10.2118/13932-PASearch in Google Scholar

76. Gupta, R. and Mohanty, K.: Temperature Effects on Surfactant-Aided Imbibition Into Fractured Carbonates, SPE Journal25 (2010) 8088. 10.2118/110204-PASearch in Google Scholar

77. Wang, J., Yang, F., Li, C., Liu, S. and Sun, D.: Double Phase Inversion of Emulsions Containing Layered Double Hydroxide Particles Induced by Adsorption of Sodium Dodecyl Sulfate, Langmuir24 (2008) 1005410061.PMid:18698856; 10.1021/la8001527Search in Google Scholar PubMed

Received: 2016-10-28
Accepted: 2017-01-17
Published Online: 2017-12-09
Published in Print: 2017-07-14

© 2017, Carl Hanser Publisher, Munich

Downloaded on 8.5.2024 from https://www.degruyter.com/document/doi/10.3139/113.110511/html
Scroll to top button