Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2013

Deformation behaviour of freestanding single-crystalline Ni3Al-based nanoparticles

  • Jana Schloesser , Joachim Rösler and Debashis Mukherji

Abstract

Deformation on a single freestanding metallic object of submicron size is usually not performed. That is primarily because it is not easy to handle isolated single objects in this size scale. Here we demonstrate a method of performing compression testing on a freestanding cubic shaped single crystalline Ni3Al-type nanoparticle (∼300 nm). The particles were deformed with the help of a nano-manipulation system inside a scanning electron microscope. The nanoscale test specimens were obtained from a nickel-based superalloy by electrochemically extracting the Ni3Al-γ′ precipitates. Stress-strain curves are generated when a cubic particle is deformed under compression between a tungsten “micro-hammer” and a silicon “micro-anvil”. Deformations conducted on particles in two different states, undeformed and predeformed, show distinctly different deformation behaviour. Sudden strain “bursts” are observed during tests on undeformed specimens indicating that deformation is possibly governed by dislocation nucleation in the defect-free nano-object. Predeformed specimens on the other hand, show a different deformation behaviour as they contain a significant amount of defects introduced during prior deformation.


* Correspondence address, Mrs. Jana Schloesser Technische Universität Braunschweig, Institut für Werkstoffe Langer Kamp 8, D-38106 Braunschweig, Germany Tel.: +49531 3913063 Fax: +49532 3913058 E-mail:

References

[1] S.Brenner: J. Appl. Phys.27 (1956) 14841491.10.1063/1.1722294Search in Google Scholar

[2] M.D.Uchic, D.M.Dimiduk, J.N.Florando, W.D.Nix: Science305 (2004) 986989.10.1126/science.1098993Search in Google Scholar PubMed

[3] D.M.Dimiduk, M.D.Uchic, T.A.Parthasarathy: Acta Mater.53 (2005) 40654077.10.1016/j.actamat.2005.05.023Search in Google Scholar

[4] J.Greer, W.Oliver, W.D.Nix: Mater. Sci. Eng. A493 (2008) 2125.10.1016/j.msea.2007.08.093Search in Google Scholar

[5] C.P.Frick, S.Orso, E.Arzt: Acta Mater.55 (2007) 38453855.10.1016/j.actamat.2007.02.034Search in Google Scholar

[6] C.A.Volkert, E.T.Lilleodden, D.Kramer, J.Weissmüller: Appl. Phys. Lett.89 (2006) 061920.10.1063/1.2240109Search in Google Scholar

[7] D.Kiener, W.Grosinger, G.Dehm, R.Pippan: Acta Mater.56 (2008) 580592.10.1016/j.actamat.2007.10.015Search in Google Scholar

[8] J.Kim, D.Jang, J.R.Greer: Acta Mater.58 (2010) 23552363.10.1016/j.actamat.2009.12.022Search in Google Scholar

[9] D.Jang, J.R.Greer: Scripta Mater.64 (2011) 7780.10.1016/j.scriptamat.2010.09.010Search in Google Scholar

[10] D.Kiener, C.Motz, G.Dehm: Mater. Sci. Eng. A505 (2009) 7987.10.1016/j.msea.2009.01.005Search in Google Scholar

[11] S.Shim, H.Bei, M.K.Miller, G.M.Pharr, E.P.George: Acta Mater.57 (2009) 503510.10.1016/j.actamat.2008.09.033Search in Google Scholar

[12] H.Bei, S.Shim, M.K.Miller, G.M.Pharr, E.P.George: Appl. Phys. Lett.91 (2007) 111915.10.1063/1.2784948Search in Google Scholar

[13] R.Maaß, D.Grolimund, S.Van Petegem, M.Willimann, M.Jensen, H.Van Swygenhoven, T.Lehnert, M.A.M.Gijs, C.A.Volkert, E.T.Lilleodden, R.Schwaiger: Appl. Phys. Lett. (2006) 1519053.10.1063/1.2358204Search in Google Scholar

[14] H.Bei, S.Shim, E.P.George, M.K.Miller, E.G.Herbert, G.M.Pharr: Scripta Mater.57 (2007) 397400.10.1016/j.scriptamat.2007.05.010Search in Google Scholar

[15] J.Zimmermann, S.Van Petegem, H.Bei, D.Grolimund, E.P.George, H.Van Swygenhoven: Scripta Mater.62 (2010) 746749.10.1016/j.scriptamat.2010.02.013Search in Google Scholar

[16] A.T.Jennings, M.J.Burek, J.R.Greer: Phys. Rev. Lett.104 (2010) 135503.10.1103/PhysRevLett.104.135503Search in Google Scholar PubMed

[17] D.Mukherji, R.Müller, R.Gilles, P.Strunz, J.Rösler, G.Kostorz: Nanotechnology15 (2004) 648657.10.1088/0957-4484/15/5/042Search in Google Scholar

[18] T.Khan, P.Caron, S.Naka: High Temperature Aluminides and Intermetallics (1990) 219214.Search in Google Scholar

[19] W.M.Mook, C.Niederberger, M.Bechelany, L.Philippe, J.Michler: Nanotechnology21 (2010) 055701.10.1088/0957-4484/21/5/055701Search in Google Scholar PubMed

[20] S.Kleindieck: Microsc. Microanal.10 (10) (2004) 946947.Search in Google Scholar

[21] J.Rösler, D.Mukherji, K.Schock, S.Kleindieck: Nanotechnology18 (2007) 125303.10.1088/0957-4484/18/12/125303Search in Google Scholar

[22] J.R.Greer, C.R.Weinberger, W.Cai: Mater. Sci. Eng. A493 (2008) 2125.10.1016/j.msea.2007.08.093Search in Google Scholar

[23] J.Kim, J.R.Greer: Appl. Phys. Lett.93 (2008) 1019163.10.1063/1.2979684Search in Google Scholar

[24] E.Arzt: Acta Mater.46 (1998) 56115626.10.1016/S1359-6454(98)00231-6Search in Google Scholar

[25] E.P.George, C.T.Liu, D.P.Pope: Acta Mater.44 (1996) 17571763.10.1016/1359-6454(95)00331-2Search in Google Scholar

[26] Z.W.Shan, R.K.Mishra, S.A.Syed Asif, O.L.Warren, A.M.Minor: Nature Mater.7 (2008) 115119.10.1038/nmat2085Search in Google Scholar PubMed

[27] D.Mukherji, G.Pigozzi, F.Schmitz, O.Näth, J.Rösler, G.Kostorz: Nanotechnology16 (2005) 21762187.10.1088/0957-4484/16/10/034Search in Google Scholar PubMed

[28] S.Lee, S.Han, W.D.Neix: Acta Mater.57 (2009) 44044415.10.1016/j.actamat.2009.06.002Search in Google Scholar

[29] W.D.Nix, J.R.Greer, G.Feng, E.T.Lilleodden: Thin Film Solids515 (2007) 31523157.10.1016/j.tsf.2006.01.030Search in Google Scholar

Received: 2010-10-1
Accepted: 2011-2-24
Published Online: 2013-06-11
Published in Print: 2011-05-01

© 2011, Carl Hanser Verlag, München

Downloaded on 16.4.2024 from https://www.degruyter.com/document/doi/10.3139/146.110504/html
Scroll to top button