Skip to main content
Log in

Superresonance in Micron Borosilicate Glass Sphere in Optical Range

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

It is shown that in the optical range it is fundamentally possible for nonabsorbing mesodimensional spheres to realize high-order Fano resonances associated with internal Mie modes. Based on simulation using the Mie theory, it is shown that for a spherical mesodimensional particle made of a real dielectric material—BK7 borosilicate glass, it is possible to generate localized fields with an extremely high intensity: about 10\({}^{7}\) for magnetic and 10\({}^{6}\) for electric fields. Moreover, it has been demonstrated that the presence of a low dissipation particle in the material might not decrease, but rather increase the intensity of the generated fields. The latter is related to the unusual behavior of the Mie scattering coefficients of the particle’s internal field under superresonance conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. R. Colom, R. Mcphedran, B. Stout, and N. Bonod, ‘‘Modal analysis of anapoles, internal fields and Fano resonances in dielectric particles,’’ J. Opt. Soc. Am. B 36, 2052–2061 (2019). https://doi.org/10.1364/JOSAB.36.002052

    Article  ADS  Google Scholar 

  2. B. S. Luk‘yanchuk, A. E. Miroshnichenko, and Yu. S. Kivshar, ‘‘Fano resonances and topological optics: An interplay of far- and near-field interference phenomena,’’ J. Opt. 15, 073001 (2013). https://doi.org/10.1088/2040-8978/15/7/073001

    Article  ADS  Google Scholar 

  3. J. Sajeev, ‘‘Localization of light,’’ Phys. Today 44 (5), 32–34 (1991). https://doi.org/10.1063/1.881300

    Article  Google Scholar 

  4. W. Cai, U. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, ‘‘Metamagnetics with rainbow colors,’’ Opt. Express 15, N 6, 3333–3341 (2007). https://doi.org/10.1364/OE.15.003333

    Article  ADS  Google Scholar 

  5. Z. Wang, B. Luk’yanchuk, L. Yue, B. Yan, J. Monks, R. Dhama, O. V. Minin, I. V. Minin, S. Huang, and A. A. Fedyanin, ‘‘High order Fano resonances and giant magnetic fields in dielectric microspheres,’’ Sci. Rep. 9, 20293 (2019). https://doi.org/10.1038/s41598-019-56783-3

    Article  ADS  Google Scholar 

  6. L. Yue, Z. Wang, B. Yan, J. N. Monks, Y. Joya, R. Dhama, O. V. Minin, and I. V. Minin, ‘‘Super-enhancement focusing of teflon spheres,’’ Ann. Phys. (Berlin, Ger.) 532, 2000373 (2020). https://doi.org/10.1002/andp.202000373

  7. L. Yue, B. Yan, J. N. Monks, R. Dhama, Ch. Jiang, O. V. Minin, I. V. Minin, and Z. Wang, ‘‘Full three-dimensional Poynting vector flow analysis of great field-intensity enhancement in specifically sized spherical-particles,’’ Sci. Rep. 9, 20224 (2019). https://doi.org/10.1038/s41598-019-56761-9

    Article  ADS  Google Scholar 

  8. M. V. Berry, ‘‘Superoscillations and leaky spectra,’’ J. Phys. A: Math. Theor. 52, 015202 (2018). https://doi.org/10.1088/1751-8121/aaeebb

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. O. V. Minin and I. V. Minin, ‘‘Optical phenomena in mesoscale dielectric particles,’’ Photonics 8, 591 (2021). https://doi.org/10.3390/photonics8120591

    Article  ADS  Google Scholar 

  10. I. V. Minin, O. V. Minin, and Zh. Song, ‘‘Peculiarities of generation of extremal electromagnetic fields in a dielectric mesodimensional sphere taking environment into account,’’ Pis’ma Zh. Tekh. Fiz. 48 (18), 41–44 (2022). https://doi.org/10.21883/PJTF.2022.18.53398.19300

    Article  Google Scholar 

  11. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons,, Hoboken, N.J., 2007). https://doi.org/10.1002/9783527618156

  12. L. Su, Ya. Chen, A. Y. Yi, F. Klocke, and G. Pongs, ‘‘Refractive index variation in compression molding of precision glass optical components,’’ Appl. Opt. 47, 1662–1667 (2008). https://doi.org/10.1364/AO.47.001662

    Article  ADS  Google Scholar 

  13. A. C. P. Rocha, J. R. Silva, S. M. Lima, L. A. O. Nunes, and L. H. C. Andrade, ‘‘Measurements of refractive indices and thermo-optical coefficients using a white-light Michelson interferometer,’’ Appl. Opt. 55, 6639–6643 (2016). https://doi.org/10.1364/AO.55.006639

    Article  ADS  Google Scholar 

  14. T. Agbana, J. Diehl, F. van Pul, Sh. M. Khan, V. Patlan, M. Verhaegen, and G. Vdovin, ‘‘Imaging & identification of malaria parasites using cellphone microscope with a ball lens,’’ PLoS ONE 13, e0205020 (2018). https://doi.org/10.1371/journal.pone.0205020

    Article  Google Scholar 

  15. T. Christopoulos, O. Tsilipakos, G. Sinatkas, and E. Kriezis, ‘‘On the calculation of the quality factor in contemporary photonic resonant structures,’’ Opt. Express 27, 14505–14522 (2019). https://doi.org/10.1364/OE.27.014505

    Article  ADS  Google Scholar 

  16. L. Petrakis, ‘‘Spectral line shapes: Gaussian and Lorentzian functions in magnetic resonance,’’ J. Chem. Educ. 44, 432–439 (1967). https://doi.org/10.1021/ed044p432

    Article  Google Scholar 

  17. A. N. Oraevsky, ‘‘Whispering-gallery waves,’’ Quant. Electron. 32, 377–400 (2002). https://doi.org/10.1070/QE2002v032n05ABEH002205

    Article  ADS  Google Scholar 

  18. K. Grujic, J. P. Hole, O. G. Helles, and J. S. Wilkinson, ‘‘Whispering gallery mode excitation in borosilicate glass microspheres by K+ ion-exchanged channel waveguide coupler,’’ Proc. SPIE 6101, 61010L (2006). https://doi.org/10.1117/12.669565

    Article  ADS  Google Scholar 

  19. E. Khaled, S. Hill, P. Barber, and D. Chowdhury, ‘‘Near-resonance excitation of dielectric spheres with plane waves and off-axis Gaussian beams,’’ Appl. Opt. 31, 1166–1169 (1992). https://doi.org/10.1364/AO.31.001166

    Article  ADS  Google Scholar 

  20. X. Zambrana-Puyalto, D. D’Ambrosio, and G. Gagliardi, ‘‘Excitation mechanisms of whispering gallery modes with direct light scattering,’’ Laser Photonics Rev. 15, 2000528 (2021). https://doi.org/10.1002/lpor.202000528

    Article  ADS  Google Scholar 

  21. A. Couairon and A. Myzyrowicz, ‘‘Femtosecond filamentation in transparent media,’’ Phys. Rep. 441, 47–189 (2007). https://doi.org/10.1016/j.physrep.2006.12.005

    Article  ADS  Google Scholar 

  22. Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, ‘‘Subdiffraction field localisation in the scattering of femtosecond laser radiation by a dielectric microsphere,’’ Quantum Electron. 44, 48 (2014). https://doi.org/10.1070/QE2014v044n01ABEH015266

    Article  ADS  Google Scholar 

  23. C. D. Cantrell, ‘‘Theory of nonlinear optics in dielectric spheres. II. Coupled-partial-wave theory of resonant, resonantly pumped stimulated Brillouin scattering,’’ J. Opt. Soc. Am. B 8, 2158–2180 (1991). https://doi.org/10.1364/JOSAB.8.002158

    Article  ADS  Google Scholar 

Download references

Funding

The work is supported by the development program of the Tomsk Polytechnic University and Natural Science Research Program of Huai’an (no. HAB202153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Minin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Trubitsyna

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minin, O.V., Minin, I.V. & Zhou, S. Superresonance in Micron Borosilicate Glass Sphere in Optical Range. Optoelectron.Instrument.Proc. 58, 514–519 (2022). https://doi.org/10.3103/S8756699022050107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699022050107

Keywords:

Navigation