Skip to main content
Log in

Experimental Investigation Into Micro-Textured Surface Generation by Through-Mask Electrochemical Micromachining

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Micro texturing with dimples is one of the most established methods for the enhancement of lubrication and tribological performance. In this work, a novel approach of through-mask electrochemical micromachining is instigated to fabricate high-aspect-ratio circular micro-dimples utilizing a low-cost photoresist (AZ-4903) as mask. Experiments were performed to understand the influence of the applied voltage along with the electrolyte type and concentration on the machining precision and surface characteristics of the generated micro array. The influence of three electrolytes has been studied and it has been experimentally established that 10% NaCl + 10% NaNO3 is favorable during maximization of the depth of the generated micro-dimples to 39.03 µm whereas undercut is minimized to 15.15 µm by utilizing 20% NaNO3. The surface quality of the generated micro-dimples has been found to be the finest, i.e. 0.062 µm, for the samples machined with 10% NaNO3. Patterned arrays containing micro-dimples having maximum depths of 30 μm, 35 μm, and 40 μm were successfully fabricated over a stainless steel (SS304) substrate by using these electrolytes with considerable accuracy and repeatability. The experiments confirm possibility to obtain high-aspect-ratio micro-dimples with the least degree of undercut using this technique. Further, friction test results were analyzed to figure out the alterations in the frictional coefficient of the micro-dimples with different depths as well as with non-dimpled samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Bruzzone, A.A.G., Costa, H.L., Lonardo, P.M., and Lucca, D.A., Ann. CIRP, 2008, vol. 57, no. 2, pp. 750–769.

    Article  Google Scholar 

  2. Sen, M. and Shan, H.S., Int. J. Mach. Tool. Manuf., 2005, vol. 45, pp. 137–152.

    Article  Google Scholar 

  3. Li, L., Diver, C., Atkinson, J., Giedl-Wagner, R., et al., Ann. CIRP, 2006, vol. 55, no. 1, pp. 179–182.

    Article  Google Scholar 

  4. Ghosh, S., Choudhury, D., Roy, T., Mamat, A.B., et al., Sci. Technol. Adv. Mater., 2015, vol. 16, art. ID 035002.

    Article  Google Scholar 

  5. Liu, X., Chu, P.K., and Ding, C., Mater. Sci. Eng., R, 2004, vol. 47, pp. 49–121.

    Article  Google Scholar 

  6. Ibatan, T., Uddin, M.S., and Chowdhury, M.A.K., Surf. Coat. Technol., 2015, vol. 272, pp. 102–120.

    Article  Google Scholar 

  7. Paital, S.R., Cao, Z., He, W., and Dahotre, N.B., Biofabrication, 2010, vol. 2, art. ID 025001.

    Article  Google Scholar 

  8. Xiong, D., Yang, Y., and Deng, Y., Surf. Coat. Technol., 2013, vol. 228, pp. S442–S445.

    Article  Google Scholar 

  9. Zwahr, C., Gunther, D., Brinkmann, T., Gulow, N., et al., Advanced Healthcare Materials, Weinheim: Wiley, 2017.

    Google Scholar 

  10. Pratap, T. and Patra K., Int. J. Adv. Manuf. Technol., 2018, vol. 94, pp. 2821–2845.

    Article  Google Scholar 

  11. Ghosh, S. and Abanteriba S., Sci. Technol. Adv. Mater., 2016, vol. 17, pp. 715–735.

    Article  Google Scholar 

  12. Hu, T., Hu, L., and Ding Q., Surf. Coat. Technol., 2016, vol. 206, pp. 5060–5066.

    Article  Google Scholar 

  13. Matsumura, T., Iida, F., Hirose, T., and Yoshino, M., J. Mater. Process. Technol., 2012, vol. 212, pp. 2669–2677.

    Article  Google Scholar 

  14. Lu, Y., Guo, P., Pei, P., and Ehmann, K.F., Int. J. Adv. Manuf. Technol., 2015, vol. 76, pp. 1807–1817.

    Article  Google Scholar 

  15. Roy, T., Choudhury, D., Mamat, A.B., and Pingguan-Murphy, B., Ceram. Int., 2014, vol. 40, pp. 2381–2388.

    Article  Google Scholar 

  16. Natsu, W., Ikeda, T. and Kunieda, M., Precis. Eng., 2007, vol. 31, pp. 33–39.

    Article  Google Scholar 

  17. Wang, J., Chen, W., and Gao, F., Proc. Inst. Mech. Eng.,Part B, 2016, vol. 230, pp. 466–474.

    Google Scholar 

  18. Park, M.S. and Chu, C.N., J. Micromech. Microeng., 2007, vol. 17, pp. 1451–1457.

    Article  Google Scholar 

  19. Schonenberger, I. and Roy, S., Electrochim. Acta, 2005, vol. 51, pp. 809–819.

    Article  Google Scholar 

  20. Chen, X., Qu, N., Li, H., and Xu, Z., J. Mater. Process. Technol., 2016, vol. 229, pp. 102–110.

    Article  Google Scholar 

  21. Chen, X., Qu, N., and Li, H., Int. J. Adv. Manuf. Technol., 2015, vol. 80, nos. 9–12, pp. 1577–1585.

    Article  Google Scholar 

  22. Weinmann, M., Stolpe, M., Weber, O., Busch, R., et al., J. Solid State Electrochem., 2015, vol. 19, pp. 485–495.

    Article  Google Scholar 

  23. Mahata, S., Kunar, S., and Bhattacharyya B., J. Electrochem. Soc., 2018, vol. 165, no. 3, pp. E129–E137.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the technical support of Raja Ramanna Center for Advanced Technology, Indore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mahata.

Ethics declarations

The authors declare to have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahata, S., Bhattacharyya, B. Experimental Investigation Into Micro-Textured Surface Generation by Through-Mask Electrochemical Micromachining. Surf. Engin. Appl.Electrochem. 56, 440–452 (2020). https://doi.org/10.3103/S1068375520040092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375520040092

Keywords:

Navigation