Skip to main content
Log in

Influence of triazole stabilizers on the surface morphology of environmentally benign electroless nano copper deposition

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we report the effect of triazole stabilizers: aminotriazole (ATA), benzotriazole (BTA), and tolytriazole (TTA) on the electroless deposition of copper thin film using xylitol containing copper methanesulphonate bath. Eco-friendly glyoxylic acid was used as reducing agent instead of p-formaldehyde which is carcinogenic. Potassium hydroxide was used for adjusting the pH, since it has the advantage of preventing the formation of insoluble byproducts in electroless bath, which is possible when NaOH is used. The electroless bath was optimized by addition of 1 ppm concentration of stabilizers, at 45°C and pH of 13.25 ± 0.25. Surface roughness, crystallite size and specific surface area of copper deposits were studied by the atomic force microscopy and X-ray diffraction. The anodic peak potential and corrosion current values were analyzed by the cyclic voltammetry and the Tafel plot. ATA was found to inhibit copper deposition while both BTA and TTA accelerated it. The crystallite size and surface roughness values were found to be less than 100 nanometer (nm) compare to the xylitol plain bath. TTA resulted in a better surface, structural, physical and electrochemical property of copper deposition than ATA and BTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brenner, A.R. and Riddell, G.E., J. Res. Natl. Bur., 1946, vol. 37, pp. 31–34.

    Article  Google Scholar 

  2. Narcus, H., Met. Finish., 1947, vol. 45, pp. 64–67.

    Google Scholar 

  3. Brenner, A., in Symp. on Electroless Nickel Plating, West Conshohocken: Am. Soc. Test. Mater., 1959, no. 265, pp. 1–2.

    Google Scholar 

  4. Saubestre, E.B., J. Electrochem. Soc., 1959, vol. 106, no. 4, pp. 305–309.

    Article  Google Scholar 

  5. Schlesinger, M. and Paunovic, M., Modern Electroplating, New York: Wiley, 2000, vol.14.

    Google Scholar 

  6. Schlesinger, M. and Paunovic, M., Modern Electroplating, New York: Wiley, 2010, 5th ed.

    Book  Google Scholar 

  7. Advances in Electrochemical Science and Engineering, Alkica, R.C. and Kolb, D.M., Eds., New York: Wiley, 2002, vol. 7, pp. 225–270.

  8. Balci, S., Bittner, A.M., Hahn, K., Scheu, C., et al., Electrochim. Acta, 2006, vol. 51, pp. 6251–6257.

    Article  Google Scholar 

  9. Rohan, J.F., Casey, D.P., Ahern, B.M., Rhen, F.M.F., et al., Electrochem. Commun., 2008, vol. 10, pp. 1419–1422.

    Article  Google Scholar 

  10. Alkharafi, F.M., El-Shamy, A.M., and Ateya, B.G., Int. J. Electrochem. Sci., 2009, vol. 4, pp. 1351–1364.

    Google Scholar 

  11. Ababneh, A., Sheban, M., Abu-Dalo, M., and Andreescu, S., Jordan J. Civil Eng., 2009, vol. 3, pp. 91–102.

    Google Scholar 

  12. Antonijevic, M.M. and Petrovic, M.B., Int. J. Electrochem. Sci., 2008, vol. 3, pp. 1–28.

    Google Scholar 

  13. Wu, X., Chou, N., Lupher, D., and Davis, L.C., Proc. 1998 Conf. on Hazardous Waste Research, Snowbird, 1998, vol. 9, pp. 374–382.

    Google Scholar 

  14. Kahled, K.F., Electrochim. Acta, 2009, vol. 54, pp. 4345–4352.

    Article  Google Scholar 

  15. Fox, P.G., Lewis, G., and Boden, P.J., Corros. Sci., 1979, vol. 19, pp. 457–467.

    Article  Google Scholar 

  16. Chadwick, D. and Hashemi, T., Corros. Sci., 1978, vol. 18, pp. 39–51.

    Article  Google Scholar 

  17. Cho, S.-J., Nguyen, T., and Boo, J.-H., J. Nanosci. Nanotechnol., 2011, vol. 11, pp. 5328–5333.

    Article  Google Scholar 

  18. Khaled, K.F., Fadl Allah, S.A., and Hammouti, B., Mater. Chem. Phys., 2009, vol. 117, pp. 148–155.

    Article  Google Scholar 

  19. Yu, L., Guo, L., Preisser, R., and Akolkar, R., J. Electrochem. Soc., 2013, vol. 160, pp. D3004–D3008.

    Article  Google Scholar 

  20. Wu, X. and Sha, W., Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 2008, vol. 38, pp. 292–296.

    Google Scholar 

  21. Karthikeyan, S., Plat. Surf. Finish., 2002, vol. 79, pp. 54–56.

    Google Scholar 

  22. Bhagwat, M., Shah, P., and Ramaswamy, V., Mater. Lett., 2003, vol. 57, pp. 1604–1611.

    Article  Google Scholar 

  23. Ohno, I., J. Mater. Sci. Eng., 1991, vol. 146, pp. 33–49.

    Article  Google Scholar 

  24. Junginger, R. and Elsner, G., J. Electrochem. Soc., 1998, vol. 135, pp. 2304–2308.

    Article  Google Scholar 

  25. Gan, X., Wu, Y., Liu, L., Shen, B., et al., Surf. Coat. Technol., 2007, vol. 201, pp. 7018–7023.

    Article  Google Scholar 

  26. Theivasanthi, T. and Alagar, M., Int. J. Phys. Sci., 2011, vol. 6, pp. 3662–3671.

    Google Scholar 

  27. Balaramesh, P., Venkatesh, P., Rekha, S., and Hemamalini, M., Int. J. Innovative Res. Adv. Stud., 2014, vol. 3, pp. 167–181.

    Google Scholar 

  28. Debye, P. and Scherrer, P., Phys. Z., 1916, vol. 17, pp. 277–283.

    Google Scholar 

  29. Debye, P. and Scherrer, P., Phys. Z., 1917, vol. 18, pp. 291–301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. BalaRamesh.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BalaRamesh, P., Venkatesh, P., Thinesh Kumar, R. et al. Influence of triazole stabilizers on the surface morphology of environmentally benign electroless nano copper deposition. Surf. Engin. Appl.Electrochem. 53, 509–514 (2017). https://doi.org/10.3103/S1068375517060023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375517060023

Keywords

Navigation