Skip to main content
Log in

Multiscale Global Atmosphere Model SL-AV: the Results of Medium-range Weather Forecasts

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Development of the multiscale version of the global atmosphere model SL-AV required many improvements in the dynamical core, replacement or refinement of parameterization algorithms and complex tuning of the model. These modifications were initially tested with the experiments on modern climate simulation and then incorporated into the model configuration for medium-range numerical weather prediction. The impact of these model improvements on forecast quality is studied in this paper. The increase in accuracy of model climate characteristics has led to the reduction of forecast errors. The comparison of quality for numerical forecasts starting from the initial data of Hydrometcenter of Russia and ECMWF is carried out. The effect of replacing the initial data turned out to be comparable to the effect of multi-year works on model development. This shows the importance and necessity of development and improvement of the Hydrometcenter of Russia data assimilation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Volodin, V. Ya. Galin, A. S. Gritsun, A. V. Gusev, N. A. Diansky, V. P. Dymnikov, R. A. Ibrayev, V. V. Kalmykov, S. V. Kostrykin, D. V. Kulyamin, V. N. Lykossov, E. V. Mortikov, O. O. Rybak, M. A. Tolstykh, R. Yu. Fadeev, I. A. Chernov, V. V. Shashkin, and N. G. Yakovlev, Mathematical Modeling of the Earth System (MAKS Press, Moscow, 2016) [in Russian].

    Google Scholar 

  2. E. M. Volodin and V. N. Lykosov, “Parameterization of Heat and Moisture Processes in Soil–Vegetation System. 1. Description and Calculations Using Local Observational Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 34 (1998) [Izv., Atmos. Oceanic Phys., No. 4, 34 (1998)].

    Google Scholar 

  3. V. P. Dymnikov, G. R. Kontarev, N. V. Guseva, I. V. Kolotovkin, A. G. Kulinych, N. P. Gazetova, G. V. Shemetova, L. E. Kaminskaya, and Z. V. Torbina, “Forecasts of Meteorological Elements in a Limited Territory,” Meteorol. Gidrol., No. 9 (1975) [in Russian].

    Google Scholar 

  4. G. I. Marchuk, V. P. Dymnikov, V. B. Zalesny, V. N. Lykossov, and V. Ya. Galin, Mathematical Modeling of the General Circulation of the Atmosphere a–nd Ocean (Gidrometeoizdat, Leningrad, 1984) [in Russian].

    Google Scholar 

  5. M. A. Tolstykh, “Semi–Lagrangian High–resolution Model of the Atmosphere for Numerical Weather Prediction,” Meteorol. Gidrol., No. 4 (2001) [Russ. Meteorol. Hydrol., No. 4 (2001)].

    Google Scholar 

  6. M. A. Tolstykh, N. A. Diansky, A. V. Gusev, and D. B. Kiktev, “Simulation of Seasonal Anomalies of Atmospheric Circulation Using Coupled Atmosphere–Ocean Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 2, 50 (2014) [Izv., Atmos. Oceanic Phys., No. 2, 50 (2014)].

    Google Scholar 

  7. M. A. Tolstykh, J.–F. Geleyn, E. M. Volodin, N. N. Bogoslovskii, R. M. Vilfand, D. B. Kiktev, T. V. Krasjuk, S. V. Kostrykin, V. G. Mizyak, R. Yu. Fadeev, V. V. Shashkin, A. V. Shlyaeva, I. N. Ezau, and A. Yu. Yurova, “Development of the Multiscale Version of the SL–AV Global Atmosphere Model,” Meteorol. Gidrol., No. 6 (2015) [Russ. Meteorol. Hydrol., No. 6, 40 (2015)].

    Google Scholar 

  8. M. A. Tolstykh, V. V. Shashkin, R. Yu. Fadeev, A. V. Shlyaeva, V. G. Mizyak, V. S. Rogutov, N. N. Bogoslovskii, G. S. Goyman, Atmosphere Modelling System for Seamless Prediction (Triada Ltd, Moscow, 2017) [in Russian].

    Google Scholar 

  9. R. Yu. Fadeev, “Algorithm for Reduced Grid Generation on a Sphere for a Global Finite–difference Atmospheric Model,” Computational Mathematics and Mathematical Physics, No. 2, 53 (2013).

    Google Scholar 

  10. R. Yu. Fadeev, M. A. Tolstykh, and E. M. Volodin, “Climate Version of the SL–AV Atmosphere Model: Development and First Results,” Meteorol. Gidrol. (2019) [Russ. Meteorol. Hydrol. (2019)] (in print).

    Google Scholar 

  11. M. D. Tsyrul’nikov, P. I. Svirenko, V. E. Gorin, M. E. Gorbunov, A. L. Ordin, and A. N. Bagrov, “New Technology for Objective Analysis Based on 3D–VAR Scheme,” in Results of Testing New and Improved Technologies, Methods for Hydrometeorological Forecasts, No. 39 (2012) [in Russian].

    Google Scholar 

  12. V. V. Shashkin, M. A. Tolstykh, and E. M. Volodin, “Modelling of the Stratosphere Circulation Using SL–AV Semi–Lagrangian Model,” Meteorol. Gidrol. (2019) [Russ. Meteorol. Hydrol. (2019)] (in print).

    Google Scholar 

  13. V. V. Shashkin, M. A. Tolstykh, A. R. Ivanova, and E. N. Skriptunova, “SL–AV Atmospheric Model Version Using a–p Hybrid Vertical Coordinates,” Meteorol. Gidrol., No. 9 (2017) [Russ. Meteorol. Hydrol., No. 9, 42 (2017)].

    Google Scholar 

  14. I. Bastak Duran, J.–F. Geleyn, and F. A. Vana, “Compact Model for the Stability Dependency of TKE Production–Destruction–Conversion Terms Valid for the Whole Range of Richardson Numbers,” J. Atmos. Sci., 71 (2014).

  15. M. Bonavita, E. Holm, L. Isaksen, and M. Fisher, “The Evolution of the ECMWF Hybrid Data Assimilation System,” Quart. J. Roy. Meteorol. Soc., No. 694, 142 (2016).

    Google Scholar 

  16. M.–D. Chou, M. J. Suarez, A Solar Radiation Parameterization (CLIRAD–SW) for Atmospheric Studies (NASA Goddard Space Flight Center, NASA, Greenbelt, MD, 1999).

    Google Scholar 

  17. D. P. Dee et al., “The ERA–Interim Reanalysis: Configuration and Performance of the Data Assimilation System,” Quart. J. Roy. Meteorol. Soc., 137 (2011).

  18. R. Yu. Fadeev, K. V. Ushakov, V. V. Kalmykov, M. A. Tolstykh, and R. A. Ibrayev, “Coupled Atmosphere–Ocean Model SLAV–INMIO: Implementation and First Results,” Russ. J. Num. Anal. and Math. Mod., No. 6, 31 (2016).

    Google Scholar 

  19. J.–F. Geleyn, F. Vana, J. Cedilnik, M. Tudor, and B. Catry, “An Intermediate Solution between Diagnostic Exchange Coefficients and Prognostic TKE Methods for Vertical Turbulent Transport,” in CAS/JSC WGNE "Blue Book” Annual Report: Research Activities in Atmospheric and Ocean Modelling, Ed. by J. Cote (2006).

    Google Scholar 

  20. C. O. Hines, “Doppler–spread Parameterization of Gravity–wave Momentum Deposition in the Middle Atmosphere. Part 1: Basic Formulation,” J. Atmos. & Solar–Terrestrial Phys., No. 4, 59 (1997).

    Google Scholar 

  21. T. Jung, N. D. Gordon, P. Bauer, D. H. Bromwich, M. Chevallier, J. J. Day, J. Dawson, F. Doblas–Reyes, C. Fairall, H. F. Goessling, M. Holland, J. Inoue, T. Iversen, S. Klebe, P. Lemke, M. Losch, A. Makshtas, B. Mills, P. Nurmi, D. Perovich, P. Reid, I. A. Renfrew, G. Smith, G. Svensson, M. Tolstykh, and Q. Yang, “Advancing Polar Prediction Capabilities on Daily to Seasonal Time Scales,” Bull. Amer. Meteorol. Soc., 97 (2016).

  22. E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, “RRTM, a Validated Correlated–k Model for the Longwave,” J. Geophys. Res., No. 16, 102 (1997).

    Google Scholar 

  23. A. Staniforth and J. Cote, “Semi–Lagrangian Integration Schemes for Atmospheric Models. A Review,” Mon. Wea. Rev., 119 (1991).

  24. T. Tarasova and B. Fomin, “The Use of New Parameterizations for Gaseous Absorption in the CLIRAD–SW Solar Radiation Code for Models,” J. Atmos. and Ocean. Technol., No. 6, 24 (2007).

    Google Scholar 

  25. K. E. Taylor, R. J. Stouffer, and G. A. Meehl, “An Overview of CMIP5 and the Experimental Design,” Bull. Amer. Meteorol. Soc., 93 (2012).

  26. M. Tolstykh, V. Shashkin, R. Fadeev, and G. Goyman, “Vorticity–divergence Semi–Lagrangian Global Atmospheric Model SL–AV20: Dynamical Core,” Geosci. Model Develop., 10 (2017).

  27. M. A. Tolstykh, “Variable Resolution Global Semi–Lagrangian Atmospheric Model,” Russ. J. Num. Anal. & Math. Mod., No. 4, 18 (2003).

    Google Scholar 

  28. P. Termonia, C. Fischer, E. Bazile, F. Bouyssel, R. Brozkova, P. Benard, B. Bochenek, D. Degrauwe, M. Derkova, R. E. Khatib, R. Hamdi, J. Masek, P. Pottier, N. Pristov, Y. Seity, P. Smolikova, O. Spaniel, M. Tudor, Y. Wang, C. Wittmann, and A. Joly, “The ALADIN System and Its Canonical Model Configurations AROME CY41T1 and ALARO CY40T1,” Geosci. Model Develop., 11 (2018).

  29. TRMM: Tropical Rainfall Measuring Mission, https://trmm.gsfc.nasa.gov/overview_dir/background.htmil.

  30. World Meteorological Organization. Manual on the Global Data–processing and Forecasting System (WMO No. 485, Geneva, 2017), http://apps.ecmwf.int/wmolcdnv/scores/time_series/msl.

  31. World Meteorological Organization Lead Centre for Deterministic Forecast Verification, https://library.wmo.int/opac/doc_num.php?explnum_id=4246.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Tolstykh.

Additional information

Original Russian Text © M.A. Tolstykh, R.Yu. Fadeev, V.V. Shashkin, G.S. Goyman, R.B. Zaripov, D.B. Kiktev, S.V. Makhnorylova, V.G. Mizyak, V.S. Rogutov, 2018, published in Meteorologiya i Gidrologiya, 2018, No. 11, pp. 90–99.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolstykh, M.A., Fadeev, R.Y., Shashkin, V.V. et al. Multiscale Global Atmosphere Model SL-AV: the Results of Medium-range Weather Forecasts. Russ. Meteorol. Hydrol. 43, 773–779 (2018). https://doi.org/10.3103/S1068373918110080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373918110080

Keywords

Navigation