Skip to main content
Log in

Anodic behavior of the NiO-Fe2O3-Cr2O3-Cu composite during the low-temperature electrolysis of aluminum

  • Metallurgy of Nonferrous Metals
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

In order to fabricate oxide-metallic composites with the composition 25.3NiO-41.2Fe2O3-13.5Cr2O3-20.0Cu (wt %), the temperature and duration of sintering (1350°C, 30 min) that ensure the formation of the solid solution of chromium oxide in nickel ferrite have been determined. This material is tested as an anode for the electrolysis of the low-temperature solution with the composition 12.0NaF-36.8KF-51.2AlF3 (wt %), which was saturated with Al2O3 (t = 800°C). The amount of gaseous oxygen evolved on the anode was measured. It is shown that the main reaction on an anode at current density i = 0.015–1.0 A cm−2 is the oxidation of oxygen-containing anions from a melt with the formation of gaseous O2 and a substantial increase in the oxidation rate of the composite anode is observed at i > 1.0 A cm−2. The voltage across the electrolyzer (4.5 ± 0.5 V) and the anodic potential (2.43 ± 0.2 relative to the Al reference electrode) during a prolonged experiment (for 89 h, i = 0.4 A cm−2) indicate a stable and acceptable electrical conductivity of the material, while the dissolution rate, which was calculated by the weight loss (0.6 kg/yr) and volume loss (0.7 cm/yr), satisfy the requirements to inert anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Billehaug, K. and Oye, H., Aluminium, 1981, vol. 57, no. 2, p. 146.

    Google Scholar 

  2. Zaikov, Yu.P., Khramov, A.P., and Ivanovskii, L.E., Elektrokhimiya, 1997, vol. 33, no. 12, p. 1408.

    Google Scholar 

  3. Sadoway, D.R., JOM, 2001, vol. 53, no. 5, p. 34.

    Article  Google Scholar 

  4. Blinov, V.A., Gladkikh, A.B., Mikhalev, Yu.G., et al., Tekhn.-Ekonom. vestn. BrAZ (appl. gasette “Bratskii Metallurg”), 2001, no. 5, p. 76.

    Google Scholar 

  5. Tarcy, G.P., Light Metals, 1986, p. 309.

    Google Scholar 

  6. Thonstad, J. and Olsen, E., J. Appl. Electrochem., 1999, no. 29, p. 293.

    Google Scholar 

  7. Thonstad, J. and Olsen, E., J. Appl. Electrochem., 1999, no. 29, p. 301.

    Google Scholar 

  8. Lainer, Yu.A., Lyakishev, N.P., Alymov, M.I., et al., Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 2004, no. 3, p. 50.

    Google Scholar 

  9. Rei, S.P., Liu, K., and Uairokh, D.A., Patent RF 2251591, 2003.

    Google Scholar 

  10. Tian, Z.L. and Lai, Y.Q., Li, J., and Liu, Y.X., Acta Metall. Sin. (Engl. Lett.), 2008, vol. 21, no. 1, p. 72.

    Article  Google Scholar 

  11. Zhong-liang, T.I.A.N., Yan-qing, L.A.I., Jie, L.I., and Ye-xiang, L.I.U., J. Cent. South. Univ. Tech., 2007, vol. 14, no. 5, p. 643.

    Article  Google Scholar 

  12. DeYoung, D.H., Light Metals, 1986, p. 299.

    Google Scholar 

  13. Von Kubaschewski, O. and Hopkins, B.E., Oxidation of Metals and Alloys, London: Butterworths, 1953.

    Google Scholar 

  14. Kovrov, V.A., Khramov, A.P., Shurov, N.I., and Zaikov, Yu.P., Elektrokhimiya, 2010, vol. 46, no. 6, p. 707.

    Google Scholar 

  15. Beck, T.R., MacRae, C.M., and Wilson, N.C., Metal. Mater. Trans. B, 2011, vol. 42, no. (8), pp. 809–813.

    Google Scholar 

  16. Yang, J., Hryn, J., and Krumdick, G.J., Light Metals, 2006, p. 421.

    Google Scholar 

  17. Apisarov, A.P., Dedyukhin, A.E., Redkin, A.A., et al., Rus. J. Electrochem., 2010, vol. 46, no. 6, p. 633.

    Article  Google Scholar 

  18. Apisarov, A., Dedyukhin, A., Redkin, A., et al., Light Metals, 2009, p. 401.

    Google Scholar 

  19. Kvande, H., Light Metals, 1999, p. 369.

    Google Scholar 

  20. Suzdaltsev, A.V., Khramov, A.P., and Zaikov, Yu.P., Rus. J. Electrochem., 2012, vol. 48, no. 12, p. 1153.

    Article  Google Scholar 

  21. Kovrov, V.A., Khramov, A.P., Zaikov, Yu.P., et al., J. Appl. Electrochem., 2011, vol. 41, no. 11, p. 1301.

    Article  Google Scholar 

  22. Keniry, J., JOM, 2001, vol. 53, no. 5, p. 43.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kovrov.

Additional information

Original Russian Text © V.A. Kovrov, A.P. Khramov, Yu.P. Zaikov, V.M. Chumarev, E.N. Selivanov, 2013, published in Izvestiya VUZ. Tsvetnaya Metallurgiya, 2013, No. 6, pp. 3–8.

About this article

Cite this article

Kovrov, V.A., Khramov, A.P., Zaikov, Y.P. et al. Anodic behavior of the NiO-Fe2O3-Cr2O3-Cu composite during the low-temperature electrolysis of aluminum. Russ. J. Non-ferrous Metals 55, 8–14 (2014). https://doi.org/10.3103/S106782121401009X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106782121401009X

Keywords

Navigation