Skip to main content
Log in

The multivariate Révész’s online estimator of a regression function and its averaging

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

The first aim of this paper is to generalize the online estimator of a regression function introduced by Révész [26, 27] to the multivariate framework. Similarly to the univariate framework, the study of the convergence rate of the multivariate Révész’s estimator requires a tedious condition connecting the stepsize of the algorithm and the unknown value of the density of the regressor variable at the point at which the regression function is estimated. The second aim of this paper is to apply the averaging principle of stochastic approximation algorithms to remove this tedious condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bojanic and E. Seneta, “AUnified Theory of RegularlyVarying Sequences”, Math.Z. 134, 91–106 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  2. J. R. Blum, “Multidimensional Stochastic Approximation Methods”, Ann. Math. Statist. 25, 737–744 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Chen, “Lower Rate of Convergence for Locating aMaximum of a Function”, Ann. Statist. 16, 1330–1334 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  4. H. F. Chen, T. E. Duncan, and B. Pasik–Duncan, “A Kiefer–Wolfowitz Algorithm with Randomized Differences”, IEEE Trans. Automat. Control 44, 442–453 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Delyon and A. B. Juditsky, “Stochastic Optimization with Averaging of Trajectories”, Stochastics Stochastic Rep. 39, 107–118 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Dippon, “Accelerated Randomized Stochastic Optimization”, Ann. Statist. 31, 1260–1281 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Dippon and J. Renz, “Weighted Means of Processes in Stochastic Approximation”, Math. Meth. Statist. 5, 32–60 (1996).

    MathSciNet  MATH  Google Scholar 

  8. J. Dippon and J. Renz, “Weighted Means in Stochastic Approximation ofMinima”, SIAM J. Control Optim. 35, 1811–1827 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Fabian, “Stochastic Approximation ofMinima with Improved Asymptotic Speed”, Ann.Math. Statist. 38, 191–200 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Galambos and E. Seneta, “Regularly Varying Sequences”, Proc. Amer.Math. Soc. 41 110–116 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Hall and C. C. Heyde, Martingale Limit Theory and Its Application (Academic Press, Inc., New York–London, 1980).

    MATH  Google Scholar 

  12. P. Hall, “Effect of Bias Estimation on Coverage Accuracy of Bootstrap Confidence Intervals for a Probability Density”, Ann. Statist. 20, 675–694 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Kiefer and J. Wolfowitz, “Stochastic Estimation of the Maximum of a Regression Function”, Ann. Math. Statist. 23, 462–466 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  14. H. J. Kushner and D. S. Clark, Stochastic ApproximationMethods for Constrained and Unconstrained Systems (Springer, New York, 1978).

    Book  Google Scholar 

  15. H. J. Kushner and J. Yang, “Stochastic Approximation with Averaging of the Iterates: Optimal Asymptotic Rate of Convergence for General Processes”, SIAM J. Control Optim. 31, 1045–1062 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Le Breton, “About the Averaging Approach Schemes for Stochastic Approximation”, Math. Methods Statist. 2, 295–315 (1993).

    MathSciNet  MATH  Google Scholar 

  17. A. Le Breton and A. Novikov, “Some Results about Averaging in Stochastic Approximation”, Metrika 42, 153–171 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Mokkadem and M. Pelletier, “A Companion for the Kiefer–Wolfowitz–Blum Stochastic Approximation Algorithm”, Annals of Statist. 35 1749–1772 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Mokkadem, M. Pelletier, and Y. Slaoui, “The Stochastic Approximation Method for the Estimation of a Multivariate Probability Density”, J. Statist. Plann. Inference 139, 2459–2478 (2009a).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Mokkadem, M. Pelletier and Y. Slaoui, “Revisiting Révész Stochastic Approximation Method for the Estimation of a Regression Function”, ALEA, Lat. Amer. J. Probab. Math. Statist. 6, 63–114 (2009b).

    MathSciNet  MATH  Google Scholar 

  21. A. Mokkadem and M. Pelletier, “A Generalization of the Averaging Procedure: The Use of Two-Time-Scale Algorithms”, SIAM J. Control Optim. 49 (4), 1523–1543 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  22. E. A. Nadaraya, “On Estimating Regression”, Theory Probab. Appl. 10, 186–190 (1964).

    Article  MATH  Google Scholar 

  23. M. Pelletier, “Asymptotic Almost Sure Efficiency of Averaged Stochastic Algorithms”, SIAM J. Control Optim. 39, 49–72 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  24. B. T. Polyak, “New Method of Stochastic Approximation Type”, Automat. Remote Control 51, 937–946 (1990).

    MathSciNet  MATH  Google Scholar 

  25. B. T. Polyak and A. B. Juditsky, “Acceleration of Stochastic Approximation by Averaging”, SIAM J. Control Optim. 30 838–855 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Révész, “Robbins–Monro Procedure in a Hilbert Space and Its Application in the Theory of Learning Processes. I”, Studia Sci.Math.Hung. 8, 391–398 (1973).

    MathSciNet  MATH  Google Scholar 

  27. P. Révész, “How to Apply the Method of Stochastic Approximation in the Nonparametric Estimation of a Regression Function”, Math. Operationsforsch. Statist., Ser. Statist. 8, 119–126 (1977).

    MathSciNet  MATH  Google Scholar 

  28. D. Ruppert, “Almost Sure Approximations to the Robbins–Monro and Kiefer–Wolfowitz Processes with Dependent Noise”, Ann. of Probab. 10, 178–187 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Ruppert, “Stochastic Approximation”, in Handbook of Sequential Analysis, Ed. by B. K. Ghosh and P. K. Sen (Marcel Dekker, New York, 1991), pp. 503–529.

    Google Scholar 

  30. J. C. Spall, “A Stochastic ApproximationAlgorithmfor Large-Dimensional Systems in the Kiefer–Wolfowitz Setting”, in Proc. Conference on Decision and Control (IEEE, New York, 1988), pp. 1544–1548.

    Chapter  Google Scholar 

  31. J. C. Spall, “A One-Measurement Form of Simultaneous Perturbation Stochastic Approximation”, Automatica J. IFAC 33, 109–112 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  32. G. S. Watson, “Smooth Regression Analysis”, Sankhya Ser. A 26, 359–372 (1964).

    MathSciNet  MATH  Google Scholar 

  33. G. Yin, “On Extensions of Polyak’s Averaging Approach to Stochastic Approximation”, Stochastics Stochastic Rep. 33, 245–264 (1991).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mokkadem.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokkadem, A., Pelletier, M. The multivariate Révész’s online estimator of a regression function and its averaging. Math. Meth. Stat. 25, 151–167 (2016). https://doi.org/10.3103/S1066530716030017

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530716030017

Keywords

2000 Mathematics Subject Classification

Navigation