Skip to main content
Log in

The study of fracture toughness and failure mechanisms of cutting-tool hardmetals with plasma-modified surface

  • Investigation of Machining Processes
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The paper presents the results of fracture toughness testing under local loading (indentation) for specimens of cutting-tool hardmetals upon surface treatment with a highly concentrated plasma jet. The authors of the paper address the influence of the plasma modification process and conditions on the mechanisms of crack initiation and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Loladze, T.N., Prochnost’ i Iznosostoikost’ rezhushchego instrumenta (Strength and Wear Resistance of Cutting Tools), Moscow: Mashinostroenie, 1982.

    Google Scholar 

  2. Lisovskii, A.F., Formation of the Gradient Structure in Sintered Hard Alloys (Review), Sverkhtverdye Materialy, 2010, no. 4, pp. 36–53 [J. Superhard Mater., 2010, no. 4, pp. 250–262].

    Google Scholar 

  3. Vereshchaka, A.S., Rabotosposobnost’ rezhushchego instrumental s iznosostoikimi pokrytiyami (Performance of Cutting Tools with Wear-Resistant Coatings), Moscow: Mashinostroenie, 1993.

    Google Scholar 

  4. Samotugin, S.S., Lavrinenko, V.I., Samotugina, Yu.S., and Kudinova, E.V., The Influence of Plasma Surface Modification Process on the Structure and Phase Composition of Cutting-Tool Hardmetals, Sverkhtverdye Materialy, 2011, no. 3, pp. 74–84 [J. Superhard Mater., 2011, no. 3, pp. 200–207].

    Google Scholar 

  5. Yares’ko, S.I., Improving Performance of Cemented Carbide Tools by Laser Treatment, Fiz. Khim. Obrab. Mater., 2003, no. 5, pp. 18–22.

    Google Scholar 

  6. Gureev, D.M., Laletin, A.N., Chulkin, A.P., et al., The Influence of Pulsed Laser Radiation on the State of Cobalt Interlayer in Hardmetals, Fiz. Khim. Obrab. Mater., 1990, no. 1, pp. 51–54.

    Google Scholar 

  7. Petrenko, P.V., Grabovskii, Yu.E., Gritskevich, A.L, Kulish, N.P., and Mel’nikova, N.A., Structural-Phase Transformations in WC-Co Cemented Carbides During Low-Flux Electron Beam Irradiation, Fiz. Khim. Obr. Mater., 2003, no. 3, pp. 29–39.

    Google Scholar 

  8. Korshunov, A.B., Mirkin, L.I., Myakotin, E.A., Shesterykov, S.A., and Shemayev, B.V., Ionizing Radiation Hardening of Cobalt-Binder Hardmetal Inserts, Fiz. Khim. Obr. Mater., 1997, no. 3, pp. 5–9.

    Google Scholar 

  9. Lisovskii, A.F., TMM Process Increases Service Life of Sintered Hardmetal Products, Instrum. Svit, 2005, no. 2, pp. 8–9.

    Google Scholar 

  10. Samotugin, S.S. and Leshchinskii, L.K., Plasmennoe uprochnenie instrumental’nykh materialov (Plasma Hardening of Tool Materials), Donetsk: Novyi Mir, 2002.

    Google Scholar 

  11. Novikov, N.V., Dub, S.N., and Bulychev, S.A., Fracture Toughness Microtesting Methods, Zavod. Lab., 1988, no. 7, pp. 60–67.

    Google Scholar 

  12. Dub, S.N., Reliability of Ceramics Fracture Toughness Measurements by Indentation, in Brandt, R.C., Hasselman, D.P.H., Munz, D., Sakai, M., and Shevchenko, V.Ya. (Eds.), Fracture Mechanics of Ceramics, New York: Plenum Press, 1992, vol. 10, pp. 109–118.

    Chapter  Google Scholar 

  13. Chernyavskii, K.S., Tumanov, V.I., Konyukhova, L.A., et al., Crack Propagation in WC-Co Hardmetals in Various Loading Modes, in Issledovanie i razrabotka tverdykh splavov. Sb. (Research and Development of Hardmetals. Collected Research Papers), Moscow, 1988, pp. 24–32.

    Google Scholar 

  14. Loshak, M.G., Prochnost’ i dolgovechnost’ tverdykh splavov (Strength and Durability of Hardmetals, Kiev: Naukova Dumka, 1984.

    Google Scholar 

  15. Roebuk, B. and Almond, E.A., Deformation and Fracture Processes and the Physical Metallurgy of WC-Co Hard Metals, Int. Metals Rev., 1988, no. 2, pp. 90–110.

    Google Scholar 

  16. Ochkasov, V.F. and Krasina, T.I., Fracture Toughness of WC-Co Hardmetals, Tsvetn. Met., 1990, no. 1, pp. 107–110.

    Google Scholar 

  17. Kremnev, L.S., Fracture Behavior of Cutting-Tool Materials, Metallov. Term. Obrab. Met., 1994, no. 4, pp. 17–22.

    Google Scholar 

  18. Moroz, L.S., Mekahnika i fizika deformatsii i razrushenia materialov (Mechanics and Physics of Strains and Fracture in Materials), Leningrad: Mashinostroenie, 1984.

    Google Scholar 

  19. Hellan, K., Introduction to Fracture Mechanics, New York: McGraw-Hill, 1984.

    Google Scholar 

  20. Lisovskii, A.F., The Formation of Mesostructures in Sintered Hardmetals, Poroshk. Metall., 2001, no. 1/2, pp. 91–99.

    Google Scholar 

  21. Lisovskii, A.F., Sintered Hardmetals: Self-organization of Defects and the Structure Formation Concept, Sverkhtverdye Materialy, 2001, no. 6, pp. 48–53 [J. Superhard Mater., 2001, no. 6].

    Google Scholar 

  22. Devin, L.N. and Vaisband, M.D., Strength of Tool Materials under Single Impact Loading, Probl. Prochn., 1992, no. 7, pp. 33–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.S. Samotugin, V.I. Lavrinenko, E.V. Kudinova, Yu.S. Samotugina, 2013, published in Sverkhtverdye Materialy, 2013, Vol. 35, No. 4, pp. 63–73.

About this article

Cite this article

Samotugin, S.S., Lavrinenko, V.I., Kudinova, E.V. et al. The study of fracture toughness and failure mechanisms of cutting-tool hardmetals with plasma-modified surface. J. Superhard Mater. 35, 242–250 (2013). https://doi.org/10.3103/S1063457613040060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457613040060

Keywords

Navigation