Skip to main content
Log in

Bi4Ti3O12-Based Ferroelectric Ceramics Designed for Extreme Conditions

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A comparative study is performed of Bi4Ti3O12-based high-temperature ferroelectric ceramics fabricated with three different types of sintering. The dependences of the microstructure, dielectric and piezoelectric properties of the ceramics on the types of sintering are established. It is shown that ceramics sintered with hot pressing have the best combination of functional characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. This work does not present results from our X-ray phase analysis of the Bi4Ti3O12 ceramics obtained with different types of sintering.

REFERENCES

  1. Dorrian, J.F., Newnham, R.E., Smith, D.K., et al., Ferroelectrics, 1972, vol. 3, p. 17.

    Article  ADS  Google Scholar 

  2. Hervoches, C.H. and Lightfoot, P., Chem. Mater., 1999, vol. 11, p. 3359.

    Article  Google Scholar 

  3. Rae, A.D., Thompson, J.G., Withers, R.L., et al., Acta Crystallogr., Sect. B, 1990, vol. 46, p. 474.

    Article  Google Scholar 

  4. Lomanova, N.A., Russ. J. Inorg. Chem., 2022, vol. 67, p. 741.

    Article  Google Scholar 

  5. Shirokov, V.B. and Talanov, M.V., Acta Crystallogr., Sect B, 2019, vol. 75, p. 978.

    Article  Google Scholar 

  6. Park, B.H., Kang, B.S., Bu, S.D., et al., Nature, 1999, vol. 401, p. 682.

    Article  ADS  Google Scholar 

  7. Kalinkin, A.N., Kozhbakhteev, E.M., Polyakov, A.E., and Skorikov, V.M., Inorg. Mater., 2013, vol. 49, p. 1031.

    Article  Google Scholar 

  8. Slavov, S.S., Soreto Teixeira, S., Graca, M.P.F., et al., Int. J. Appl. Glass Sci., 2019, vol. 10, p. 202.

    Article  Google Scholar 

  9. Searfass, C.T., Pheil, C., Sinding, K., et al., IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 2016, vol. 63, p. 139.

    Article  Google Scholar 

  10. Cheng, T., Ma, Q., Gao, H., et al., Mater. Today Chem., 2022, vol. 23, p. 100750.

    Article  Google Scholar 

  11. Megriche, A., Lebrun, L., and Troccaz, M., Sens. Actuators, A, 1999, vol. 78, p. 88.

    Article  Google Scholar 

  12. Jiang, A.Q., Hu, Z.X., and Zhang, L.D., Appl. Phys. Lett., 1999, vol. 74, p. 114.

    Article  ADS  Google Scholar 

  13. Jovalekic, C., Pavlovic, M., Osmokrovic, P., et al., Appl. Phys. Lett., 1998, vol. 72, p. 1051.

    Article  ADS  Google Scholar 

  14. Xie, X., Zhou, Z., Liang, R., et al., Adv. Electron. Mater., 2022, vol. 8, p. 2101266.

    Article  Google Scholar 

  15. Shulman, H.S., Damjanovic, D., and Setter, N., J. Am. Ceram. Soc., 2000, vol. 83, p. 528.

    Article  Google Scholar 

  16. Marakhovsky, M.A., Panich, A.A., Talanov, M.V., et al., Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, no. 11, p. 1419.

    Article  Google Scholar 

  17. Marakhovsky, M.A., Panich, A.A., Talanov, M.V., et al., Ferroelectrics, 2020, vol. 560, no. 1, p. 1.

    Article  ADS  Google Scholar 

  18. Marakhovskii, M.A., Panich, A.A., and Marakhov-skii, V.A., Fundam. Probl. Radioelektron. Priborostr., 2018, vol. 18, no. 2, p. 430.

    Google Scholar 

  19. Marakhovskii, M.A. and Panich, A.A., Izv. Yuzhn. Fed. Univ., Tekhn. Nauki, 2017, vol. 191, no. 6, p. 242.

    Google Scholar 

  20. Marakhovsky, M.A., Panich, A.A., Talanov, M.V., et al., Ferroelectrics, 2021, vol. 575, no. 1, p. 43.

    Article  ADS  Google Scholar 

  21. Kan, Y., Wang, P., Xu, W.T., et al., J. Am. Ceram. Soc., 2005, vol. 88, no. 6, p. 1631.

    Article  Google Scholar 

  22. Vusevker, Yu.A., Fainrider, D.E., Panich, A.E., et al., RF Patent 2139840, 1999.

  23. Esquivel-Elizondo, J.R., Hinojosa, B.B., and Nino, J.C.J., Chem. Mater., 2011, vol. 23, no. 22, p. 4965.

    Article  Google Scholar 

  24. Kargin, Yu.F., Ivicheva, S.N., and Volkov, V.V., Russ. J. Inorg. Chem., 2015, vol. 60, no. 5, p. 619.

    Article  Google Scholar 

  25. Patri, T., Rao, T.D., Chandra Sekhar, K.S.K.R., et al., Phys. Status Solidi B, 2022, vol. 259, p. 2200223.

    Article  ADS  Google Scholar 

  26. Long, C., Fan, H. Ren, W., et al., J. Eur. Ceram. Soc., 2019, vol. 39, p. 4103.

    Article  Google Scholar 

  27. Xie, X., Wang, T., Zhou, Z., et al., J. Eur. Ceram. Soc., 2019, vol. 39, p. 957.

    Article  Google Scholar 

  28. Chen, Y., Xie, S., Wang, H., et al., J. Alloys Compd., 2017, vol. 696, p. 746.

    Article  Google Scholar 

  29. Bush, A.A., Talanov, M.V., Stash, A.I., et al., Cryst. Growth Des., 2020, vol. 20, no. 2, p. 824.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-72-10022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Marakhovskiy.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ACKNOWLEGMENTS

Our measurements were made using equipment at the High Technologies shared resource center.

Additional information

Translated by G. Dedkov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marakhovskiy, M.A., Talanov, M.V. & Panich, A.A. Bi4Ti3O12-Based Ferroelectric Ceramics Designed for Extreme Conditions. Bull. Russ. Acad. Sci. Phys. 87, 1317–1321 (2023). https://doi.org/10.3103/S1062873823703227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873823703227

Navigation