Skip to main content
Log in

A scanning apertureless near-field optical microscope as an instrument for characterizing the optical properties of a surface with nanometer spatial resolution

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The operating principles of an apertureless scanning near-field optical microscope (ASNOM) are described. The metalized needle of an atomic force microscope is a probe in the device, and the optical interaction with objects on the surface is localized near its tip, which is a few nanometers in size. The needle’s body is several microns long, ensuring high efficiency of its electromagnetic interaction with the light waves incident on it from the outside and emitted by it into space. The nano-antenna formed by the needle thus raises the efficiency of the optical interaction between nano-objects and the electromagnetic ether by 4–5 orders of magnitude. Results from scanning semiconductor and polymer structures are presented that demonstrate the ability of ASNOM to produce high-contrast images of objects’ optical properties (absorption, reflection, and thermal expansion) with resolutions of 10–50 nm, regardless of wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zenhausern, F., O’Boyle, M.P., and Wickramasinghe, H.K., Appl. Phys. Lett., 1994, vol. 65, no. 13, p. 1623.

    Article  ADS  Google Scholar 

  2. Binnig, G., Quate, C.F., and Gerber, C., Phys. Rev. Lett., 1986, vol. 56, p.930.

    Article  ADS  Google Scholar 

  3. Martin, Y. and Wickramasinghe, H.K., Appl. Phys. Lett., 1987, vol. 50, no. 20, p. 1455.

    Article  ADS  Google Scholar 

  4. Dürig, U., Pohl, D.W., and Rohner, F., J. Appl. Phys., 1986, vol. 59, no. 10, p. 3318.

    Article  ADS  Google Scholar 

  5. Betzig, E., Lewis, A., Harootunian, A., et al., Biophys. J., 1986, vol. 49, no. 1, p.269.

    Article  Google Scholar 

  6. Binnig, G. and Rohrer, H., US Patent 4343993, 1982.

  7. Kazantsev, D.V., Kuznetsov, E.V., Timofeev, S.V., Shelaev, A.V., and Kazantseva, E.A., Phys.-Usp., 2017, vol. 60, p.259.

    Article  ADS  Google Scholar 

  8. Novotny, L. and Hecht, B., Principles of Nano-Optics, Cambridge Univ. Press, 2006.

    Book  Google Scholar 

  9. Novotny, L. and Stranick, S.J., Annu. Rev. Phys. Chem., 2006, vol. 57, no. 1, p.303.

    Article  ADS  Google Scholar 

  10. Renger, J., Deckert, V., Grafström, S., and Eng, L.M., J. Opt. Soc. Am. A, 2004, vol. 21, no. 7, p. 1362.

    Article  ADS  Google Scholar 

  11. Neacsu, C.C., Dreyer, J., Behr, N., and Raschke, M.B., Phys. Rev. B, 2006, vol. 73, p. 193406.

    Article  ADS  Google Scholar 

  12. Hillenbrand, R. and Keilmann, F., Phys. Rev. Lett., 2000, vol. 85, no. 14, p. 3029.

    Article  ADS  Google Scholar 

  13. Mie, G., Ann. Phys., 1908, vol. 330, no. 3, p.377.

    Article  Google Scholar 

  14. Batchelder, J.S. and Taubenblatt, M.A., Appl. Phys. Lett., 1989, vol. 55, no. 3, p.215.

    Article  ADS  Google Scholar 

  15. Zenhausern, F., Martin, Y., and Wickramasinghe, H.K., Science, 1995, vol. 269, no. 5227, p. 1083.

    Article  ADS  Google Scholar 

  16. Labardi, M., Patane, S., and Allegrini, M., Appl. Phys. Lett., 2000, vol. 77, no. 5, p.621.

    Article  ADS  Google Scholar 

  17. Dazzi, A., Prazeres, R., Glotin, F., and Ortega, J., Infrared Phys. Technol., 2006, vol. 49, nos. 1–2, p.113.

    Article  ADS  Google Scholar 

  18. Drude, P., Ann. Phys., 1900, vol. 306, p. 566.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Kazantsev.

Additional information

Original Russian Text © D.V. Kazantsev, E.A. Kazantseva, E.V. Kuznetsov, V.V. Polyakov, S.V. Timofeev, A.V. Shelaev, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Seriya Fizicheskaya, 2017, Vol. 81, No. 12, pp. 1709–1714.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazantsev, D.V., Kazantseva, E.A., Kuznetsov, E.V. et al. A scanning apertureless near-field optical microscope as an instrument for characterizing the optical properties of a surface with nanometer spatial resolution. Bull. Russ. Acad. Sci. Phys. 81, 1511–1515 (2017). https://doi.org/10.3103/S1062873817120176

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873817120176

Navigation