Skip to main content
Log in

Determining the mechanism of interaction between molecules of porphyrin and fullerene and gold nanoparticles, based on luminescence spectroscopy data

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Gold nanoparticles are synthesized via laser ablation of a gold target in a liquid. The constants that characterize the efficiency of porphyrins and fullerenes bonding with gold nanoparticles are determined using a modified Stern–Volmer equation. The results from luminescence quenching measurements are presented. It is found that the efficiency of bonding depends on whether there are functional groups in the molecular fragments. Porphyrin containing para-bromphenyl groups at the meso positions of the porphyrin core has the highest affinity for the surfaces of gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng, J., Zhou, C., Yu, M., and Liu, J., Nanoscale, 2012, vol. 4, no. 14, p. 4073.

    Article  ADS  Google Scholar 

  2. Zaleska-Medynska, A., Marchelek, M., Diak, M., and Grabowska, E., Adv. Colloid Interface Sci., 2016, vol. 229, p.80.

    Article  Google Scholar 

  3. Amendola, V. and Meneghetti, M., Phys. Chem. Chem. Phys., 2013, vol. 15, no. 9, p. 3027.

    Article  Google Scholar 

  4. Shaikh, A.J., Rabbani, F., Sherazi, T.A., et al., J. Phys. Chem. A, 2015, vol. 119, p. 1108.

    Article  Google Scholar 

  5. Jayaraman, S., Yu, L.T., and Srinivasan, M.P., Nanoscale, 2013, vol. 5, no. 7, p. 2974.

    Article  ADS  Google Scholar 

  6. Mu, Q., Jiang, G., Chen, L., et al., Chem. Rev., 2014, vol. 114, no. 15, p. 7740.

    Article  Google Scholar 

  7. Murphy, S., Huang, L., and Kamat, P.V., J. Phys. Chem. C, 2011, vol. 115, p. 22761.

    Article  Google Scholar 

  8. Shaikh, A.J., Rabbani, F., Sherazi, T.A., et al., J. Phys. Chem. A, 2015, vol. 119, p. 1108.

    Article  Google Scholar 

  9. Sebarchievici, I., Taranu, B.O., Birdeanu, M., et al., Appl. Surf. Sci., 2016, vol. 390, p.131.

    Article  ADS  Google Scholar 

  10. Jayaraman, S., Yu, L.T., and Srinivasan, M.P., Nanoscale, 2013, vol. 5, no. 7, p. 2974.

    Article  ADS  Google Scholar 

  11. Salomon, A., Genet, C., and Ebbesen, T.W., Angew. Chem. Int. Ed., 2009, vol. 48, no. 46, p. 8748.

    Article  Google Scholar 

  12. Kotiaho, A., Lahtinen, R., Lehtivuori, H., et al., J. Phys. Chem., 2008, vol. 112, p. 10316.

    Google Scholar 

  13. Zhao, Y., Jiang, Y., and Fang, Y., Chem. Phys., 2006, vol. 323, nos. 2–3, p.169.

    Article  ADS  Google Scholar 

  14. Inuta, T.D., Sakamoto, Y., Furube, M., et al., Chem. Sci., 2014, vol. 5, no. 5, p. 2007.

    Article  Google Scholar 

  15. Kotiaho, A., Lahtinen, R., Efimov, A., et al., J. Phys. Chem. C, 2010, vol. 114, no. 1, p.162.

    Article  Google Scholar 

  16. Swierczewska, M., Lee, S., and Chen, X., Phys. Chem. Chem. Phys., 2011, vol. 13, no. 21, p. 9929.

    Article  Google Scholar 

  17. Thomas, K.G. and Kamat, P.V., Acc. Chem. Res., 2003, vol. 36, no. 12, p.888.

    Article  Google Scholar 

  18. Ghosh, S.K. and Pal, T., Phys. Chem. Chem. Phys., 2009, vol. 11, no. 20, p. 3831.

    Article  Google Scholar 

  19. Ishihara, S., Labuta, J., Van Rossom, W., et al., Phys. Chem. Chem. Phys., 2014, vol. 16, no. 21, p. 9713.

    Article  Google Scholar 

  20. Deng, F., Yang, Y., Hwang, S., Shon, Y.-S., and Chen, S., Anal. Chem., 2004, vol. 76, no. 20, p. 6102.

    Article  Google Scholar 

  21. Islam, M.T., Molugu, S.K., Cooke, P.H., and Noveron, J.C., New J. Chem., 2015, vol. 39, no. 8, p. 5923.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Evdokimova.

Additional information

Original Russian Text © M.G. Evdokimova, A.S. Konev, A.V. Povolotckaia, I.E. Kolesnikov, A.V. Kazakova, A.V. Povolotskiy, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Seriya Fizicheskaya, 2017, Vol. 81, No. 12, pp. 1576–1580.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evdokimova, M.G., Konev, A.S., Povolotckaia, A.V. et al. Determining the mechanism of interaction between molecules of porphyrin and fullerene and gold nanoparticles, based on luminescence spectroscopy data. Bull. Russ. Acad. Sci. Phys. 81, 1391–1395 (2017). https://doi.org/10.3103/S1062873817120103

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873817120103

Navigation