Skip to main content
Log in

Investigation on Hollow Beam Propagation through Turbulence Conditions in Free Space Optical Communication

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

In Free Space Optical Communication (FSO), the optical signal from the laser source severely affects while travelling through free space atmospheric channel due to scattering, absorption and other effects of atmospheric turbulence conditions. This degrades the performance of FSO communication. In this article, we have generated the hollow beam from the laser output by the inverse axicon lens called inverted axicon beam. An artificial controlled turbulence chamber is created and the test signal has been transmitted through the turbulence conditions by employing various modulation schemes such as PAM, PWM, PPM, ASK, BPSK and QPSK separately. In all cases, we measured parameters phase jitter and Time jitter experimentally and the results are compared. Two types of wavelength laser sources such as red and green lasers are used for the analysis. In which, ASK provides a better withstand ability to jitter than other modulation techniques with atmospheric turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. Arul Teen, Y.P., Nathiyaa, T. Rajesh, K.B., and Karthick, S., Bessel Gaussian beam propagation through turbulence in free space optical communication, Opt. Mem. Neural Networks, 2018, vol. 27, no. 2, pp. 81–88. https://doi.org/10.3103/s1060992x18020029

    Article  Google Scholar 

  2. Boucher, P., Hoyo, J.D., Billet, C., Pinel, O., Labroille, G., and Courvoisier, F., Generation of high conical angle Bessel–Gauss beams with reflective axicons, Appl. Opt., 2018, vol. 57, no. 23, p. 6725. https://doi.org/10.1364/ao.57.006725

    Article  Google Scholar 

  3. Chaleshtory, Z.N., Gholami, A., Ghassemlooy, Z., and Sedghi, M., Experimental investigation of environment effects on the FSO link with turbulence, IEEE Photonics Technol. Lett., 2017, vol. 29, no. 17, pp. 1435–1438. https://doi.org/10.1109/lpt.2017.2723569

    Article  Google Scholar 

  4. Dabiri, M.T. and Sadough, S.M.S., Generalized blind detection of OOK modulation for free-space optical communication, IEEE Commun. Lett., 2017, vol. 21, no. 10, pp. 2170–2173. https://doi.org/10.1109/lcomm.2017.2722472

    Article  Google Scholar 

  5. Cox, M.A., Maqondo, L., Kara, R., Milione, G., Cheng, L., and Forbes, A., The resilience of Hermite- and Laguerre-Gaussian modes in turbulence, J. Lightwave Technol., 2019, vol. 37, no. 16, pp. 3911–3917. https://doi.org/10.1109/jlt.2019.2905630

    Article  Google Scholar 

  6. Andrews, L., Philips, R.L., and Hopen, C.Y., Laser Beam Scintillation with Applications, SPIE Press, 2001.

    Book  Google Scholar 

  7. Tsiftis, T.A., Sandlidis, H.G., Karagiannidis, G.K., and Sagias, N.C., Multihop free-space optical communications over strong turbulence channels, IEEE ICC Proc., 2006.

    Google Scholar 

  8. Gagliardi, R.M. and S. Karp, Optical Communications, Wiley, 1995.

    Google Scholar 

  9. Willebrand, H. and Ghuman, B.S., Free Space Optics: Enabling Optical Connectivity in Today’s Network, Sams Publishing, 2002.

    Google Scholar 

  10. Safari, M. and Uysal, M., Relay-assisted free-space optical communication, Proc. Asilomar Conf. Signals, Systems Computers, Monteray, CA, 2007.

  11. Tsiftsis, T.A., Sandalidis, H.G., Karagiannidis, G.K., and Uysal, M., Optical wireless links with spatial diversity over strong atmospheric turbulence channels, IEEE Trans. Wireless Commun., 2009, vol. 8, no. 2.

    Article  Google Scholar 

  12. Borah, D.K. and Voelz, D.G., Pointing error effects on free-space optical communication links in the presence of atmospheric turbulence, J. Lightwave Technol., 2009, vol. 27, no. 18, pp. 3965–3973.

    Article  Google Scholar 

  13. Latsa Babu Pedireddi and Balaji Srinivasan, Characterization of atmospheric turbulence effects and their mitigation using wavelet-based signal processing, IEEE Trans. Commun., 2010, vol. 58, no. 6.

  14. Yaoju, Z., Generation of thin and hollow beams by the axicon with a large open angle, J. Opt. Commun., 2008, vol. 281, pp. 508–514.

    Article  Google Scholar 

  15. Angelis, M.D., Cacciapuoti, L., Pierattini, G., and Tino, G.M., J. Opt. Lasers Eng., 2003, vol. 39, pp. 283–291.

    Article  Google Scholar 

  16. Saint-Denis, R.D., Cagniot, E., Leprince, P., Fromager, M., and Aitameur, K., Low cost adjustable axicon, J. Optoelectron. Adv. Mater., 2008, vol. 2, no. 11, pp. 693–696.

    Google Scholar 

  17. Arlt, J., Kuhn, R., and Dholakia, K., Spatial transformation of Laguerre-Gaussian laser modes, J. Mod. Opt., 2001, vol. 48, no. 5, pp. 783–787.

    MathSciNet  MATH  Google Scholar 

  18. Mishra, S.R., Tiwari, S.K., Surjya, P.R., and Shrikant, C.M., Generation of hollow conic beams using a metal axicon mirror, J. Opt. Eng., 2007, vol. 46, no. 8, pp. 84002–84006.

    Article  Google Scholar 

  19. Baumgart, l.J., Cizmar, T., Mazilu, M., Chan, C.V., Carruthers, A.E., Capron, B.A., McNeely, W., Wright, E.M., and Dholakia, K., Optical path clearing and enhanced transmission through colloidal suspensions, J. OSA Opt. Express, 2010, vol. 18, no. 16, pp. 17130–17140.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. P. Arul Teen, Nimmy Lazer, T. Nathiyaa or K. B. Rajesh.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arul Teen, Y.P., Lazer, N., Nathiyaa, T. et al. Investigation on Hollow Beam Propagation through Turbulence Conditions in Free Space Optical Communication. Opt. Mem. Neural Networks 28, 296–305 (2019). https://doi.org/10.3103/S1060992X19040027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X19040027

Keywords:

Navigation