Skip to main content
Log in

Computational Simulation of Conjugated Cholera Toxin Protein

  • EXPERIMENTAL WORKS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

We computed molecular dynamics (MD) simulation of the enzymatic portion of the cholera toxin A-1 polypeptide (CTA1) in its complex form with the adenosine ribosyl factor (ARF) 6 at temperatures of 283 and 323 K. From total energy analysis it was observed that the toxin in both the forms were stable thermodynamically. However CTA1 in complex with ARF6 was 72% more stable than its counterpart CTA1 in free form. This illustrates that ARF6 act as a source of stability for CTA1. These results were also confirmed by root mean square deviations (RMSD) investigations. The C-α root mean square fluctuation (RMSF) examinations revealed that there are a number of residues inside CTA1, which can be used as drug target. Thus, this studies provides a path for designing and synthesizing inhibitory drugs in order to dysfunction and inactivate the cholera toxin inside the human body. The variations in the values of the radius of gyration and hydrogen bonding proved that protein unfolding and refolding were normal routine phenomena in its structure at both the temperatures. Solvent accessible surface area study showed the hydrophilic nature and due to this property, it could be easily carried in aerosols and used as a one of the devastating biological toxin. The structural identification (STRIDE) of protein algorithm was successfully used to determine the partially disordered secondary structure of CTA1. On account of this partially disordered secondary structure, it can easily deceive the proteolytic enzymes of endoplasmic reticulum of the host cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Polyzos, A., Alderton, M.R., Dawson, R.M., and Hartley, P.G., Biofunctionalized surfactant mesophases as polyvalent inhibitors of cholera toxin, Bioconjugate Chem., 2007, vol. 18, pp. 1442–1449. https://doi.org/10.1021/bc0700640

    Article  CAS  Google Scholar 

  2. Willey, J.M., Sherwood, L.M., and Woolverton, C.J., Prescott, Harley and Klein’s Microbiology, New York: McGraw-Hill, 2008.

    Google Scholar 

  3. Aman, A.T., Fraser, S., Merritt, E.A., Rodigherio, C., Kenny, M., Ahn, M., Hol, W.G., Williams, N.A., Lencer, W.I., and Hirst, T.R., A mutant cholera toxin B subunit that binds GM1-ganglioside but lacks immunomodulatory or toxic activity, Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, pp. 8536–8541. https://doi.org/10.1073/pnas.161273098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Merritt, E.A., Sarfaty, S., Feil, I.K., and Hol, W.G.J., Structural foundation for the design of receptor antagonists targeting Escherichia coli heat-labile enterotoxin, Structure, 1997, vol. 5, pp. 1485–1499. https://doi.org/10.1016/S0969-2126(97)00298-0

    Article  CAS  PubMed  Google Scholar 

  5. Vanden Broeck, D., Horvath, C., and De Wolf, M.J.S., Vibrio cholerae: cholera toxin, Int. J. Biochem. Cell Biol., 2007, vol. 39, pp. 1771–1775. https://doi.org/10.1016/j.biocel.2007.07.005

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, R.G., Westbrook, M.L., Westbrook, E.M., Scott, D.L., Otwinowski, Z., Maulik, P.R., Reed, R.A., and Shipley, G.G., The 2.4 Å crystal structure of cholera toxin B subunit pentamer: Choleragenoid, J. Mol. Biol., 1995, vol. 251, pp. 550–562. https://doi.org/10.1006/jmbi.1995.0455

    Article  CAS  PubMed  Google Scholar 

  7. Miller, C.E., Majewski, J., Watkins, E.B., and Kuhl, T.L., Part I: An X-ray scattering study of cholera toxin penetration and induced phase transformations in lipid membranes, Biophys. J., 2008, vol. 95, pp. 629–640. https://doi.org/10.1529/biophysj.107.120725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baldauf, K.J., Royal, J.M., Hamorsky, K.T., and Matoba, N., Cholera toxin B: one subunit with many pharmaceutical applications., Toxins (Basel), 2015, vol. 7, pp. 974–996. https://doi.org/10.3390/toxins7030974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miyata, T., Oshiro, S., Harakuni, T., Taira, T., Matsuzaki, G., and Arakawa, T., Physicochemically stable cholera toxin B subunit pentamer created by peripheral molecular constraints imposed by de novo-introduced intersubunit disulfide crosslinks, Vaccine, 2012, vol. 30, pp. 4225–4232. https://doi.org/10.1016/j.vaccine.2012.04.047

    Article  CAS  PubMed  Google Scholar 

  10. Fu, O., Pukin, A.V., Vanufford, H.C.Q., Branson, T.R., Thies-Weesie, D.M.E., Turnbull, W.B., Visser, G.M., and Pieters, R.J., Tetra-versus pentavalent inhibitors of cholera toxin, ChemistryOpen, 2015, vol. 4, pp. 471–477. https://doi.org/10.1002/open.201500006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garcia-Hartjes, J., Bernardi, S., Weijers, C.A.G.M., Wennekes, T., Gilbert, M., Sansone, F., Casnati, A., and Zuilhof, H., Picomolar inhibition of cholera toxin by a pentavalent ganglioside GM1os-calix[5]arene, Org. Biomol. Chem., 2013, vol. 11, pp. 4340–4349. https://doi.org/10.1039/C3OB40515J

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, R.G., Scott, D.L., Westbrook, M.L., Nance, S., Spangler, B.D., Shipley, G.G., and Westbrook, E.M., The three-dimensional crystal structure of cholera toxin, J. Mol. Biol., 1995, vol. 251, pp. 563–573. https://doi.org/10.1006/jmbi.1995.0456

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, R.G., Scott, D.L., Westbrook, M.L., Nance, S., Spangler, B.D., Shipley, G.G., and Westbrook, E.M., The three-dimensional crystal structure of cholera toxin, J. Mol. Biol., 1995, vol. 251, pp. 563–573. https://doi.org/10.1006/jmbi.1995.0456

    Article  CAS  PubMed  Google Scholar 

  14. Cholera toxin (CT): Structure, in Cholera Toxins, Chaudhuri, K. and Chatterjee, S.N., Eds., Berlin: Springer-Verlag, 2009, pp. 105–123. https://doi.org/10.1007/978-3-540-88452-1_7

    Book  Google Scholar 

  15. De Luca, H.E. and Lencer, W.I., A biochemical method for tracking cholera toxin transport from plasma membrane to Golgi and endoplasmic reticulum, in Cell-Cell Interactions: Methods and Protocols, Colgan, S.P., Ed., Totowa, NJ: Humana Press, 2006, pp. 127–139. https://doi.org/10.1385/1-59745-113-4:127

    Book  Google Scholar 

  16. Zhang, R.G., Westbrook, M.L., Westbrook, E.M., Scott, D.L., Otwinowski, Z., Maulik, P.R., Reed, R.A., and Shipley, G.G., The 2.4 Å crystal structure of cholera toxin B subunit pentamer: choleragenoid, J. Mol. Biol., 1995, vol. 251, pp. 550–562. https://doi.org/10.1006/jmbi.1995.0455

    Article  CAS  PubMed  Google Scholar 

  17. Wernick, N.L.B., Chinnapen, D.J.F., Cho, J.A., and Lencer, W.I., Cholera toxin: An intracellular journey into the cytosol by way of the endoplasmic reticulum, Toxins (Basel), 2010, vol. 2, pp. 310–325. https://doi.org/10.3390/toxins2030310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wernick, N.L.B., De Luca, H., Kam, W.R., and Lencer, W.I., N-terminal extension of the cholera toxin A1-chain causes rapid degradation after retrotranslocation from endoplasmic reticulum to cytosol, J. Biol. Chem., 2010, vol. 285, pp. 6145–6152. https://doi.org/10.1074/jbc.M109.062067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lencer, W.I. and Tsai, B., The intracellular voyage of cholera toxin: Going retro, Trends Biochem. Sci., 2003, vol. 28, pp. 639–645. https://doi.org/10.1016/j.tibs.2003.10.002

    Article  CAS  PubMed  Google Scholar 

  20. De Luca, H.E. and Lencer, W.I., A biochemical method for tracking cholera toxin transport from plasma membrane to Golgi and endoplasmic reticulum, Methods Mol. Biol., 2006, vol. 341, pp. 127–139. https://doi.org/10.1385/1-59745-113-4:127

    Article  CAS  PubMed  Google Scholar 

  21. Lencer, W.I., Retrograde transport of cholera toxin into the ER of host cells., Int. J. Med. Microbiol., 2004, vol. 293, pp. 491–494. https://doi.org/10.1078/1438-4221-00293

    Article  CAS  PubMed  Google Scholar 

  22. O’Neal, C.J., Jobling, M.G., Holmes, R.K., and Hol, W.G.J., Structural basis for the activation of cholera toxin by human ARF6-GTP, Science, 2005, vol. 309, pp. 1093–1096. https://doi.org/10.1126/science.1113398

    Article  CAS  PubMed  Google Scholar 

  23. Blessy, J.J. and Sharmila, D.J.S., Molecular modeling of methyl-alpha-Neu5Ac analogues docked against cholera toxin—a molecular dynamics study, Glycoconjugate J., 2015, vol. 32, pp. 49–67. https://doi.org/10.1007/s10719-014-9570-6

    Article  CAS  Google Scholar 

  24. Blessy, J.J. and Sharmila, D.J.S., Molecular simulation of N-acetylneuraminic acid analogs and molecular dynamics studies of cholera toxin-Neu5Gc complex, J. Biomol. Struct. Dyn., 2014, vol. 33, pp. 1126–1139. https://doi.org/10.1080/07391102.2014.931825

    Article  CAS  PubMed  Google Scholar 

  25. Sharmila, D.J.S. and Veluraja, K., Conformations of higher gangliosides and their binding with cholera toxin— investigation by molecular modeling, molecular mechanics, and molecular dynamics, J. Biomol. Struct. Dyn., 2006, vol. 23, pp. 641–656. https://doi.org/10.1080/07391102.2006.10507089

    Article  CAS  PubMed  Google Scholar 

  26. Fan, E., Merritt, E.A., Zhang, Z., Pickens, J.C., Roach, C., Ahn, M., and Hol, W.G.J., Exploration of the GM1 receptor-binding site of heat-labile enterotoxin and cholera toxin by phenyl-ring-containing galactose derivatives, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2001, vol. 57, pp. 201–212. https://doi.org/10.1107/S0907444900016814

    Article  CAS  Google Scholar 

  27. Jobling, M.G. and Holmes, R.K., Identification of motifs in cholera toxin A1 polypeptide that are required for its interaction with human ADP-ribosylation factor 6 in a bacterial two-hybrid system, Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, pp. 14662–14667. https://doi.org/10.1073/pnas.011442598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jobling, M.G., Gotow, L.F., Yang, Z., and Holmes, R.K., A mutational analysis of residues in cholera toxin A1 necessary for interaction with its substrate, the stimulatory G protein Gsα, Toxins (Basel), 2015, vol. 7, pp. 919–935. https://doi.org/10.3390/toxins7030919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Craft, J.W., Shen, T., Brier, L.M., and Briggs, J.M., Biophysical characteristics of cholera toxin and Escherichia coli heat-labile enterotoxin structure and chemistry lead to differential toxicity, J. Phys. Chem. B, 2015, vol. 119, pp. 1048–1061. https://doi.org/10.1021/jp506509c

    Article  CAS  PubMed  Google Scholar 

  30. Basu, I. and Mukhopadhyay, C., Insights into binding of cholera toxin to GM1 containing membrane, Langmuir, 2014, vol. 30, pp. 15244–15252. https://doi.org/10.1021/la5036618

    Article  CAS  PubMed  Google Scholar 

  31. Lindahl, E., Hess, B., and van der Spoel, D., GROMACS 3.0: a package for molecular simulation and trajectory analysis, Mol. Model. Annu., 2001, vol. 7, pp. 306–317. https://doi.org/10.1007/s008940100045

    Article  CAS  Google Scholar 

  32. Jorgensen, W.L., Maxwell, D.S., and Tirado-Rives, J., Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc., 1996, vol. 118, pp. 11225–11236. https://doi.org/10.1021/ja9621760

    Article  CAS  Google Scholar 

  33. Vriend, G., WHAT IF: A molecular modeling and drug design program, J. Mol. Graphics, 1990, vol. 8, pp. 52–56. https://doi.org/10.1016/0263-7855(90)80070-V

    Article  CAS  Google Scholar 

  34. Badshah, S.L., Naeem, A., and Mabkhot, Y., Molecular dynamics simulation of cholera toxin A-1 polypeptide, Open Chem., 2016, vol. 14, pp. 188–196. https://doi.org/10.1515/chem-2016-0021

    Article  CAS  Google Scholar 

  35. Humphrey, W., Dalke, A., and Schulten, K., VMD: Visual molecular dynamics, J. Mol. Graphics, 1996, vol. 14, pp. 33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  36. Heinig, M. and Frishman, D., STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins, Nucleic Acids Res., 2004, vol. 32, pp. W500–W502. https://doi.org/10.1093/nar/gkh429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ogawa, H., Nakano, M., Watanabe, H., Starikov, E.B., Rothstein, S.M., and Tanaka, S., Molecular dynamics simulation study on the structural stabilities of polyglutamine peptides, Comput. Biol. Chem., 2008, vol. 32, pp. 102–110. https://doi.org/10.1016/j.compbiolchem.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  38. Sun, H., Chen, L., Gao, L., and Fang, W., Nanodomain formation of ganglioside GM1 in lipid membrane: effects of cholera toxin-mediated cross-linking, Langmuir, 2015, vol. 31, pp. 9105–9114. https://doi.org/10.1021/acs.langmuir.5b01866

    Article  CAS  PubMed  Google Scholar 

  39. Murdock, S.E., Tai, K., Ng, M.H., Johnston, S., Wu, B., Fangohr, H., Laughton, C.A., Essex, J.W., and Sansom, M.S.P., Quality assurance for biomolecular simulations, J. Chem. Theory Comput., 2006, vol. 2, pp. 1477–1481. https://doi.org/10.1021/ct6001708

    Article  PubMed  Google Scholar 

  40. Sun, T.G., Hu, J.P., Li, C.H., Chen, W.Z., and Wang, C.X., A molecular dynamics simulation study of glutamine-binding protein, J. Mol. Struct.: THEOCHEM, 2005, vol. 725, pp. 9–16. https://doi.org/10.1016/j.theochem.2005.02.056

    Article  CAS  Google Scholar 

  41. Ahmad, N., Rehman, A.U., Badshah, S.L., Ullah, A., Mohammad, A., and Khan, K., Molecular dynamics simulation of zika virus NS5 RNA dependent RNA polymerase with selected novel non-nucleoside inhibitors, J. Mol. Struct., 2020, vol. 1203, article no. 127428. https://doi.org/10.1016/j.molstruc.2019.127428

    Article  CAS  Google Scholar 

  42. Ahmad, N., Badshah, S.L., Junaid, M., Ur Rehman, A., Muhammad, A., and Khan, K., Structural insights into the Zika virus NS1 protein inhibition using a computational approach, J. Biomol. Struct. Dyn., 2020; Ahmad, N., Badshah, S.L., Junaid, M., Ur Rehman, A., Muhammad, A., and Khan, K., Structural insights into the Zika virus NS1 protein inhibition using a computational approach, J. Biomol. Struct. Dyn., 2021, vol. 39, no. 8, pp. 3004–3011. https://doi.org/10.1080/07391102.2020.1759453

  43. Sun, T.G., Hu, J.P., Li, C.H., Chen, W.Z., and Wang, C.X., A molecular dynamics simulation study of glutamine-binding protein, J. Mol. Struct.: THEOCHEM., 2005, vol. 725, pp. 9–16. https://doi.org/10.1016/j.theochem.2005.02.056

    Article  CAS  Google Scholar 

  44. Grottesi, A., Sansom, M.S.P., and Montal, M., Molecular dynamics simulations of a K+ channel blocker: Tc1 toxin from Tityus cambridgei, FEBS Lett., 2003, vol. 535, pp. 29–33. https://doi.org/10.1016/S0014-5793(02)03849-8

    Article  CAS  PubMed  Google Scholar 

  45. Caceres, R.A., Saraiva Timmers, L.F., Dias, R., Basso, L.A., Santos, D.S., and de Azevedo, W.F., Molecular modeling and dynamics simulations of PNP from Streptococcus agalactiae, Bioorg. Med. Chem., 2008, vol. 16, pp. 4984–4993. https://doi.org/10.1016/j.bmc.2008.03.044

    Article  CAS  PubMed  Google Scholar 

  46. Dertzbaugh, M.T. and Cox, L.M., The affinity of cholera toxin for Ni2+ ion, Protein Eng., 1998, vol. 11, pp. 577–581. https://doi.org/10.1093/protein/11.7.577

    Article  CAS  PubMed  Google Scholar 

  47. Ampapathi, R.S., Creath, A.L., Lou, D.I., Craft, J.W., Blanke, S.R., and Legge, G.B., Order-disorder-order transitions mediate the activation of cholera toxin, J. Mol. Biol., 2008, vol. 377, pp. 748–760. https://doi.org/10.1016/j.jmb.2007.12.075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. O’Neal, C.J., Amaya, E.I., Jobling, M.G., Holmes, R.K., and Hol, W.G.J., Crystal structures of an intrinsically active cholera toxin mutant yield insight into the toxin activation mechanism, Biochemistry, 2004, vol. 43, pp. 3772–3782. https://doi.org/10.1021/bi0360152

    Article  CAS  PubMed  Google Scholar 

  49. Banerjee, T., Taylor, M., Jobling, M.G., Burress, H., Yang, Z., Serrano, A., Holmes, R.K., Tatulian, S.A., and Teter, K., ADP-ribosylation factor 6 acts as an allosteric activator for the folded but not disordered cholera toxin A1 polypeptide, Mol. Microbiol., 2014, vol. 94, no. 4, pp. 898–912. https://doi.org/10.1111/mmi.12807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Banerjee, T., Pande, A., Jobling, M.G., Taylor, M., Massey, S., Holmes, R.K., Tatulian, S.A., and Teter, K., Contribution of subdomain structure to the thermal stability of the cholera toxin A1 subunit, Biochemistry, 2010, vol. 49, pp. 8839–8846. https://doi.org/10.1021/bi101201c

    Article  CAS  PubMed  Google Scholar 

  51. Merkley, E.D., Bernard, B., and Daggett, V., Conformational changes below the Tm: Molecular dynamics studies of the thermal pretransition of ribonuclease A, Biochemistry, 2008, vol. 47, pp. 880–892. https://doi.org/10.1021/bi701565b

    Article  CAS  PubMed  Google Scholar 

  52. Horta, B.A.C., Cirino, J.J.V., and de Alencastro, R.B., On the structure, interactions, and dynamics of bound VEGF, J. Mol. Graphics Modell., 2008, vol. 26, pp. 1091–1103. https://doi.org/10.1016/j.jmgm.2007.10.001

    Article  CAS  Google Scholar 

  53. Teter, K., Toxin instability and its role in toxin translocation from the endoplasmic reticulum to the cytosol, Biomolecules, 2013, vol. 3, pp. 997–1029. https://doi.org/10.3390/biom3040997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pande, A.H., Scaglione, P., Taylor, M., Nemec, K.N., Tuthill, S., Moe, D., Holmes, R.K., Tatulian, S.A., and Teter, K., Conformational instability of the cholera toxin A1 polypeptide, J. Mol. Biol., 2007, vol. 374, pp. 1114–1128. https://doi.org/10.1016/j.jmb.2007.10.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Lal Badshah.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badshah, S.L., Naeem, A. Computational Simulation of Conjugated Cholera Toxin Protein. Mol. Genet. Microbiol. Virol. 36 (Suppl 1), S13–S22 (2021). https://doi.org/10.3103/S0891416821050049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416821050049

Keywords:

Navigation