Skip to main content
Log in

Lox-dependent gene expression in transgenic plants obtained via Agrobacterium-mediated transformation

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Lox sites of the Cre/lox recombination system from bacteriophage P1 were analyzed for their ability to affect on transgene expression when inserted upstream from a gene coding sequence adjacent to the right border (RB) of T-DNA. Wild and mutated types of lox sites were tested for their effect upon bar gene expression in plants obtained via Agrobacterium-mediated and biolistic transformation methods. Lox-mediated expression of bar gene, recognized by resistance of transgenic plants to PPT, occurred only in plants obtained via Agrobacterium-mediated transformation. RT-PCR analysis confirms that PPT-resistant phenotype of transgenic plants obtained via Agrobacterium-mediated transformation was caused by activation of bar gene. The plasmid with promoterless gus gene together with the lox site adjacent to the RB was constructed and transferred to Nicotiana tabacum as well. Transgenic plants exhibited GUS activity and expression of gus gene was detected in plant leaves. Expression of bar gene from the vectors containing lox site near RB allowed recovery of numerous PPT-resistant transformants of such important crops as Beta vulgaris, Brassica napus, Lactuca sativa and Solanum tuberosum. Our results demonstrate that the lox site sequence adjacent to the RB can be used to control bar gene expression in transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RB:

T-DNA right border

LB:

T-DNA left border

PPT:

phosphinotricin

GUS:

β-glucuronidase

NAA:

naphthalene_acetic acid

BA:

6-benzylaminopurine, β-d-glucuronidase

MU:

4-methylumbelliferone

References

  1. Potenza, K., Aleman, L., and Sengupta-Gopalan, C., Targeting transgenic expression in research, agricultural, and environmental applications: promoters used in plant transformation, In Vitro Cell Dev. Biol., 2004, vol. 40, no. 1, pp. 1–22.

    Article  CAS  Google Scholar 

  2. Corrado, G. and Karali, M., Inducible gene expression systems and plant biotechnology, Biotechnol. Adv., 2009, vol. 27, no. 6, pp. 733–743.

    Article  PubMed  Google Scholar 

  3. Hajdukiewicz, P., Svab, Z., and Maliga, P., The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation, Plant Mol. Biol., 1994, vol. 25, no. 6, pp. 989–994.

    Article  PubMed  CAS  Google Scholar 

  4. McBride, K. and Summerfelt, K., Improved binary vectors for Agrobacterium-mediated plant transformation, Plant Mol. Biol., 1990, vol. 14, no. 2, pp. 269–276.

    Article  PubMed  CAS  Google Scholar 

  5. Al-Kaff, N., Kreike, M., Covey, S., Pitcher, R., Page, A., and Dale, P., Plants rendered herbicide-susceptible by cauliflower mosaic virus-elicited suppression of a 35S promoter-regulated transgene, Nat. Biotechnol., 2000, vol. 18, no. 9, pp. 995–999.

    Article  PubMed  CAS  Google Scholar 

  6. Zheng, X., Deng, W., Luo, K., Duan, H., Chen, Y., McAvoy, R., Song, S., Pei, Y., and Li, Y., The cauliflower mosaic virus (CaMV) 35s promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters, Plant Cell Rep., 2007, vol. 26, no. 8, pp. 1195–1203.

    Article  PubMed  CAS  Google Scholar 

  7. Jagannath, A., Bandyopadhyay, P., Arumugam, N., Gupta, V., Burma, P.K., and Pental, D., The use of a spacer DNA fragment insulates the tissue-specific expression of a cytotoxic gene (Barnase) and allows high-frequency generation of transgenic male sterile lines in Brassica juncea L., Mol. Breed., 2001, vol. 8, no. 1, pp. 11–23.

    Article  CAS  Google Scholar 

  8. Yoo, S.Y., Bomblies, K., Yoo, S.K., Yang, J.W., Choi, M.S., Lee, J.S., Weigel, D., and Ahn, J.H., The 35S promoter used in a selectable marker gene of a plant transformation vector affects the expression of the transgene, Planta, 2005, vol. 221, no. 4, pp. 523–530.

    Article  PubMed  CAS  Google Scholar 

  9. Selker, E., Gene silencing: repeats that count, Cell, 1999, vol. 97, no. 2, pp. 157–160.

    Article  PubMed  CAS  Google Scholar 

  10. Vaucheret, H. and Fagard, M., Transcriptional gene silencing in plants: targets, inducers and regulators, Trends Genet., 2001, vol. 17, no. 1, pp. 29–35.

    Article  PubMed  CAS  Google Scholar 

  11. Matzke, M.A., Aufsatz, W., Kanno, T., Mette, M., and Matzke, A., Homology-dependent gene silencing and host defense in plants, Adv. Genet., 2002, vol. 46, no. 1, pp. 235–275.

    Article  PubMed  CAS  Google Scholar 

  12. Kumar, D., Patro, S., Ranjan, R., Sahoo, D., Maiti, I., and Dey, N., Development of useful recombinant promoter and its expression analysis in different plant cells using confocal laser scanning microscopy, PLoS One, 2011, vol. 6, no. 9, p. e24627.

    Article  PubMed  CAS  Google Scholar 

  13. Mehrotra, R., Gupta, G., Sethi, R., Bhalothia, P., Kumar, N., and Mehrotra, S., Designer promoter: an artwork of cis engineering, Plant Mol. Biol., 2011, vol. 75, no. 6, pp. 527–536.

    Article  PubMed  CAS  Google Scholar 

  14. Dale, E. and Ow, D., Intra- and intermolecular sitespecific recombination in plant cells mediated by bacteriophage p1 recombinase, Gene, 1990, vol. 91, no. 1, pp. 79–85.

    Article  PubMed  CAS  Google Scholar 

  15. Gilbertson, L., Cre-lox recombination: Cre-active tools for plant biotechnology, Trends Biotechnol., 2003, vol. 21, no. 12, pp. 550–555.

    Article  PubMed  CAS  Google Scholar 

  16. Qin, M., Bayley, C., Stockton, T., and Ow, D.W., Cre recombinase-mediated site-specific recombination between plant chromosomes, Proc. Nat. Acad. Sci. U.S.A., 1994, vol. 91, no. 5, pp. 1706–1710.

    Article  CAS  Google Scholar 

  17. Medberry, S., Dale, E., Qin, M., and Ow, D.W., Intrachromosomal rearrangements generated by Cre-lox site-specific recombination, Nucleic Acids Res., 1995, vol. 23, no. 3, pp. 485–590.

    Article  PubMed  CAS  Google Scholar 

  18. Day, C., Lee, E., Kobayashi, J., Holappa, L., Albert, H., and Ow, D.W., Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced, Genes Dev., 2000, vol. 14, no. 22, pp. 2869–2880.

    Article  PubMed  CAS  Google Scholar 

  19. Gleave, A., Mitra, D., Mudge, S., and Morris, B., Selectable marker-free transgenic plant without sexual crossing: transient expression of Cre recombinase and use of a conditional lethal dominant gene, Plant. Mol. Biol., 1999, vol. 40, no. 2, pp. 223–235.

    Article  PubMed  CAS  Google Scholar 

  20. Corneille, S., Lutz, K., Svab, Z., and Maliga, P., Efficient elimination of selectable marker genes from the plastid genome by the cre-lox site-specific recombination system, Plant J., 2001, vol. 27, no. 2, pp. 171–178.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang, W., Subbarao, S., Addae, P., Shen, A., Armstrong, C., Pechke, V., and Gilbertson, L., Cre-lox mediated marker gene excision in transgenic maize (Zea mays L.) plants, Theor. Appl. Genet., 2003, vol. 107, no. 7, pp. 1157–1168.

    Article  PubMed  CAS  Google Scholar 

  22. Wang, Y., Chen, B., Hu, Y., Li, J., and Lin, Z., Inducible excision of selectable marker gene from transgenic plants by the cre/lox site-specific recombination system, Transgenic Res, 2005, vol. 14, no. 5, pp. 605–614.

    Article  PubMed  CAS  Google Scholar 

  23. Chakraborti, D., Sarkar, A., Mondal, H., Schuermann, D., Hohn, B., Sarmah, B., and Das, S., Cre/lox system to develop selectable marker free transgenic tobacco plants conferring resistance against sap sucking homopteran insect, Plant Cell Rep., 2008, vol. 27, no. 10, pp. 1623–1633.

    Article  PubMed  CAS  Google Scholar 

  24. Fobert, P., Labbe, H., Cosmopolous, J., GottlobMcHugh, S., Ouellet, T., Hattori, J., Iyer, V., and Miki, B.L., T-DNA tagging of a seed coat-specific cryptic promoter in tobacco, Plant J., 1994, vol. 6, no. 4, pp. 567–577.

    Article  PubMed  CAS  Google Scholar 

  25. Foster, P., Hattori, J., Labbe, H., Ouellet, T., Fobert, P., James, L., Iyer, V., and Miki, B., A tobacco cryptic constitutive promoter tCUP revealed by T-DNA tagging, Plant Mol. Biol., 1999, vol. 4, no. 1, pp. 45–55.

    Article  Google Scholar 

  26. Malik, K., Wu, K., Li, X.Q., Martin-Heller, T., Hu, M., Foster, E., Tian, L., Wang, C., Ward, K., Jordan, M., Brown, D., Gleddie, S., Simmonds, D., Zheng, S., Simmonds, J., and Miki, B., A constitutive gene expression system derived from the tCUP cryptic promoter elements, Theor. Appl. Genet., 2002, vol. 105, no. 4, pp. 505–514.

    Article  PubMed  CAS  Google Scholar 

  27. Shcherbak, N., Belokurova, V., Getsko, I., Komarnitskii, I., and Kuchuk, N., Effect of lox-sites of the Cre lox recombination system on promoterless bar gene expression in transgenic plants, Tsitol. Genet., 2006, vol. 40, no. 1, pp. 3–9.

    PubMed  CAS  Google Scholar 

  28. Sakhno, L., Gocheva, E., Komarnitskii, I., and Kuchuk, N., Stable expression of promoterless bar gene in transgenic rape plants, Tsitol. Genet., 2008, vol. 42, no. 1, pp. 21–28.

    PubMed  CAS  Google Scholar 

  29. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, no. 3, pp. 473–497.

    Article  CAS  Google Scholar 

  30. Kishchenko, E., Komarnitskii, I., and Kuchuk, N., Production of transgenic sugar beet (Beta vulgaris L.) plants resistant to phosphinothricin, Cell. Biol. Int., 2005, vol. 29, no. 1, pp. 15–19.

    Article  PubMed  CAS  Google Scholar 

  31. Olhoft, P., Lin, K., Galbraith, J., Nielsen, N., and Somers, D., The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells, Plant Cell Rep., 2001, vol. 20, no. 8, pp. 731–737.

    Article  CAS  Google Scholar 

  32. Gamborg, O., Miller, R., and Ojima, K., Nutrient requirements of suspension cultures of soybean foot cells, Exp. Cell Res., 1968, vol. 50, no. 1, pp. 151–158.

    Article  PubMed  CAS  Google Scholar 

  33. Cheung, W., Hubert, N., and Landry, B., A simple and rapid DNA microextraction method for plant, animal and insect suitable for RAPD and other PCR analyses, PCR Meths. Appl., 1993, vol. 3, no. 1, pp. 69–70.

    Article  CAS  Google Scholar 

  34. Logemann, J., Schell, J., and Willmitzer, L., Improved method for the isolation of RNA from plant tissues, Anal. Biochem., 1987, vol. 163, no. 1, pp. 16–20.

    Article  PubMed  CAS  Google Scholar 

  35. Jefferson, R., Kavanagh, T., and Bevan, M., GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants, EMBO J., 1987, vol. 6, no. 13, pp. 3901–3907.

    PubMed  CAS  Google Scholar 

  36. Bradford, M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, no. 1, pp. 248–254.

    Article  PubMed  CAS  Google Scholar 

  37. Gupta, V., Sita, G., Shaila, M., and Jagannathan, V., Genetic transformation of Brassica nigra by Agrobacterium based vector and direct plasmid uptake, Plant Cell Rep., 1993, vol. 12, nos 7/8, pp. 418–421.

    CAS  Google Scholar 

  38. Poulsen, G., Genetic transformation of Brassica, Plant Breed., 1996, vol. 115, no. 4, pp. 209–225.

    Article  CAS  Google Scholar 

  39. Teeri, T.H., Herrera-Estella, L., Depiker, A., Montagu, M., and van Palva, E.T., Identification of plant promoters in situ by T-DNA mediated transcriptional fusion to the nptII gene, EMBO J., 1986, vol. 5, no. 8, pp. 1755–1760.

    PubMed  CAS  Google Scholar 

  40. Alvarado, M.C., Zsigmond, L.M., Kovács, I., Cséplö, A., Koncz, C., and Szabados, L.M., Gene trapping with firefly luciferase in Arabidopsis. Tagging of stress-responsive genes, Plant Physiol., 2004, vol. 134, no. 1, pp. 18–27.

    Article  PubMed  CAS  Google Scholar 

  41. Ryu, C.H., You, J.H., Kang, H.G., Hur, J., Kim, Y.H., Han, M.J., An, K., Chung, B.C., Lee, C.H., and An, G., Generation of T-DNA tagging lines with a bidirectional gene trap vector and the establishment of an insertion-site database, Plant Mol. Biol., 2004, vol. 54, no. 4, pp. 489–502.

    Article  PubMed  CAS  Google Scholar 

  42. Topping, J.F. and Lindsey, K., Insertional mutagenesis and promoter trapping in plants for the isolation of genes and the study of development, Transgenic Res., 1995, vol. 4, no. 5, pp. 291–305.

    Article  CAS  Google Scholar 

  43. Koo, J., Kim, Y., Kim, J., Yeom, M., Lee, I.C., and Nam, H.G., A GUS/luciferase fusion reporter for plant gene trapping and for assay of promoter activity with luciferin-dependent control of the reporter protein stability, Plant Cell Physiol., 2007, vol. 48, no. 8, pp. 1121–1131.

    Article  PubMed  CAS  Google Scholar 

  44. Yamamoto, Y.Y., Tsuhara, Y., Gohda, K., Suzuki, K., and Matsui, M., Gene trapping of the Arabidopsis genome with a firefly luciferase reporter, Plant J., 2003, vol. 35, no. 2, pp. 273–283.

    Article  PubMed  CAS  Google Scholar 

  45. Cazzonelli, C.I., Burke, J., and Velten, J., Functional characterization of the geminiviral conserved late element (CLE) in uninfected tobacco, Plant. Mol. Biol., 2005, vol. 58, no. 1, pp. 465–481.

    Article  PubMed  CAS  Google Scholar 

  46. Benfey, P.N. and Chua, N.H., The cauliflower mosaic virus 35s promoter: combinatorial regulation of transcription in plants, Science, 1990, vol. 250, no. 1, pp. 959–966.

    Article  PubMed  CAS  Google Scholar 

  47. Bouchez, D., Tokuhisa, J.G., Llewellyn, D.J., Dennis, E.S., and Ellis, J.G., The ocs-element is a component of the promoters of several T-DNA and plant viral genes, EMBO J., 1989, vol. 8, no. 1, pp. 4197–4204.

    PubMed  CAS  Google Scholar 

  48. Dey, N. and Maiti, I.B., Structure and promoter/leader deletion analysis of mirabilis mosaic virus (MMV) fulllength transcript promoter in transgenic plants, Plant. Mol. Biol., 1999, vol. 40, no. 1, pp. 771–782.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Shcherbak.

Additional information

The article is published in the original.

About this article

Cite this article

Shcherbak, N., Kishchenko, O., Sakhno, L. et al. Lox-dependent gene expression in transgenic plants obtained via Agrobacterium-mediated transformation. Cytol. Genet. 47, 145–155 (2013). https://doi.org/10.3103/S0095452713030079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452713030079

Keywords

Navigation