Skip to main content
Log in

Immortalization and malignant transformation of Eukaryotic cells

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The process of cellular transformation has been amply studied in vitro using immortalized cell lines. Immortalized cells never have the normal diploid karyotype, nevertheless, they cannot grow over one another in cell culture (contact inhibition), do not form colonies in soft agar (anchorage-dependent growth) and do not form tumors when injected into immunodeficient rodents. All these characteristics can be obtained with additional chromosome changes. Multiple genetic rearrangements, including whole chromosome and gene copy number gains and losses, chromosome translocations, gene mutations are necessary for establishing the malignant cell phenotype. Most of the experiments detecting transforming ability of genes overexpressed and/or mutated in tumors (oncogenes) were performed using mouse embryonic fibroblasts (MEFs), NIH3T3 mouse fibroblast cell line, human embryonic kidney 293 cell line (HEK293), and human mammary epithelial cell lines (mainly HMECs and MCF10A). These cell lines have abnormal karyotypes and are prone to progress to malignantly transformed cells. This review is aimed at understanding the mechanisms of cell immortalization by different “immortalizing agents”, oncogene-induced cell transformation of immortalized cells and moderate response of the advanced tumors to anticancer therapy in the light of tumor “oncogene and chromosome addiction”, intra-/intertumor heterogeneity, and chromosome instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuroki, T. and Huh, N.H., Why Are Human Cells Resistant to Malignant Cell Transformation in vitro? Jpn. J. Cancer Res., 1993, vol. 84, no. 11, pp. 1091–1100.

    Article  PubMed  CAS  Google Scholar 

  2. Malumbres, M. and Barbacid, M., RAS Oncogenes: The First 30 Years, Nat. Rev. Cancer, 2003, vol. 3, no. 6, pp. 459–465.

    Article  PubMed  CAS  Google Scholar 

  3. Stratton, M.R., Exploring the Genomes of Cancer Cells: Progress and Promise, Science, 2011, vol. 331, no. 6024, pp. 1553–1558.

    Article  PubMed  CAS  Google Scholar 

  4. Rangarajan, A. and Weinberg, R.A., Comparative Biology of Mouse Versus Human Cells: Modelling Human Cancer in Mice, Nat. Rev. Cancer, 2003, vol. 3, no. 12, pp. 952–959.

    Article  PubMed  CAS  Google Scholar 

  5. Sherr, C.J. and DePinho, R.A., Cellular Senescence: Mitotic Clock or Culture Shock? Cell, 2000, vol. 102, no. 4, pp. 407–410.

    Article  PubMed  CAS  Google Scholar 

  6. Hahn, W.C. and Weinberg, R.A., Modelling the Molecular Circuitry of Cancer, Nat. Rev. Cancer, 2002, vol. 2, no. 5, pp. 331–341.

    Article  PubMed  CAS  Google Scholar 

  7. Woo, R.A. and Poon, R.Y., Activated Oncogenes Promote and Cooperate with Chromosomal Instability for Neoplastic Transformation, Genes Dev., 2004, vol. 18, no. 11, pp. 1317–1330.

    Article  PubMed  CAS  Google Scholar 

  8. Woo, R.A. and Poon, R.Y., Gene Mutations and Aneuploidy: The Instability That Causes Cancer, Cell Cycle, 2004, vol. 3, no. 9, pp. 1101–1103.

    Article  PubMed  CAS  Google Scholar 

  9. Blasco, M.A., Lee, H.W., Hande, M.P., et al., Telomere Shortening and Tumor Formation by Mouse Cells Lacking Telomerase RNA, Cell, 1997, vol. 91, no. 1, pp. 25–34.

    Article  PubMed  CAS  Google Scholar 

  10. Seger, Y.R., Garcia-Cao, M., Piccinin, S., et al., Transformation of Normal Human Cells in the Absence of Telomerase Activation, Cancer Cell, 2002, vol. 2, no. 5, pp. 401–413.

    Article  PubMed  CAS  Google Scholar 

  11. Soo, J.K., Mackenzie, Ross A.D., Kallenberg, D.M., et al., Malignancy Without Immortality? Cellular Immortalization as a Possible Late Event in Melanoma Progression, Pigment Cell Melanoma Res., 2011, vol. 24, no. 3, pp. 490–503.

    Article  PubMed  CAS  Google Scholar 

  12. Kamijo, T., Zindy, F., Roussel, M.F., et al., Tumor Suppression at the Mouse INK4a Locus Mediated by the Alternative Reading Frame Product P19ARF, Cell, 1997, vol. 91, no. 5, pp. 649–659.

    Article  PubMed  CAS  Google Scholar 

  13. Peeper, D.S., Shvarts, A., Brummelkamp, T., et al., A Functional Screen Identifies HDRIL1 as an Oncogene That Rescues RAS-Induced Senescence, Nat. Cell Biol., 2002, no. 2, pp. 148–153.

  14. Petrenko, O., Zaika, A., and Moll, U.M., DeltaNp73 Facilitates Cell Immortalization and Cooperates with Oncogenic Ras in Cellular Transformation in vivo, Mol. Cell. Biol., 2003, vol. 23, no. 16, pp. 5540–5555.

    Article  PubMed  CAS  Google Scholar 

  15. Guo, F. and Zheng, Y., Involvement of Rho Family GTPases in P19Arf- and P53-Mediated Proliferation of Primary Mouse Embryonic Fibroblasts, Mol. Cell. Biol., 2004, vol. 24, no. 3, pp. 1426–1438.

    Article  PubMed  CAS  Google Scholar 

  16. Maeda, T., Hobbs, R.M., Merghoub, T., et al., Role of the Proto-Oncogene Pokemon in Cellular Transformation and ARF Repression, Nature, 2005, vol. 433, no. 7023, pp. 278–285.

    Article  PubMed  CAS  Google Scholar 

  17. Kobayashi, K., Era, T., Takebe, A., et al., ARID3B Induces Malignant Transformation of Mouse Embryonic Fibroblasts and is Strongly Associated With Malignant Neuroblastoma, Cancer Res., 2006, vol. 66, no. 17, pp. 8331–8336.

    Article  PubMed  CAS  Google Scholar 

  18. Sun, H. and Taneja, R., Analysis of Transformation and Tumorigenicity Using Mouse Embryonic Fibroblast Cells, Meth. Mol. Biol., 2007, vol. 383, pp. 303–310.

    Article  CAS  Google Scholar 

  19. Ivetac, I., Gurung, R., Hakim, S., et al., Regulation of PI(3)K/Akt Signalling and Cellular Transformation by Inositol Polyphosphate-4-Phosphatase-1, EMBO Rep., 2009, vol. 10, no. 5, pp. 487–493.

    Article  PubMed  CAS  Google Scholar 

  20. Spandidos, D.A. and Wilkie, N.M., Malignant Transformation of Early Passage Rodent Cells by a Single Mutated Human Oncogene, Nature, 1984, vol. 310, no. 5977, pp. 469–475.

    Article  PubMed  CAS  Google Scholar 

  21. Land, H., Chen, A.C., Morgenstern, J.P., et al., Behavior of Myc and Ras Oncogenes in Transformation of Rat Embryo Fibroblasts, Mol. Cell Biol., 1986, vol. 6, no. 6, pp. 1917–1925.

    PubMed  CAS  Google Scholar 

  22. Kelekar, A. and Cole, M.D., Immortalization by c-myc, H-ras, and Ela Oncogenes Induces Differential Cellular Gene Expression and Growth Factor Responses, Mol. Cell. Biol., 1987, vol. 7, no. 11, pp. 3899–3907.

    PubMed  CAS  Google Scholar 

  23. Sugiyama, K., Otori, K., and Esumi, H., Neoplastic Transformation of Rat Colon Epithelial Cells by Expression of Activated Human K-ras, Japan. J. Cancer Res., 1998, vol. 89, no. 6, pp. 615–625.

    Article  CAS  Google Scholar 

  24. Zongaro, S., de Stanchina, E., Colombo, T., et al., Stepwise Neoplastic Transformation of a Telomerase Immortalized Fibroblast Cell Line, Cancer Res., 2005, vol. 65, no. 24, pp. 11411–11418.

    Article  PubMed  CAS  Google Scholar 

  25. Boon, E.M., Kovarikova, M., Derksen, P.W., and van der Neut, R., MET Signalling in Primary Colon Epithelial Cells Leads to Increased Transformation Irrespective of Aberrant Wnt Signalling, Brit. J. Cancer, 2005, vol. 92, no. 6, pp. 1078–1083.

    Article  PubMed  CAS  Google Scholar 

  26. Ayyanan, A., Civenni, G., Ciarloni, L., et al., Increased Wnt Signaling Triggers Oncogenic Conversion of Human Breast Epithelial Cells by a Notch-Dependent Mechanism, Proc. Nat. Acad. Sci. U.S.A., 2006, no. 10, pp. 3799–3804.

  27. Thibodeaux, C.A., Liu, X., Disbrow, G.L., et al., Immortalization and Transformation of Human Mammary Epithelial Cells by a Tumor-Derived Myc Mutant, Breast Cancer Res. Treat., 2009, vol. 116, no. 2, pp. 281–294.

    Article  PubMed  CAS  Google Scholar 

  28. Chapman, S., Liu, X., Meyers, C., et al., Human Keratinocytes are Efficiently Immortalized by a Rho Kinase Inhibitor, J. Clin. Invest., 2010, vol. 120, no. 7, pp. 2619–2626.

    Article  PubMed  CAS  Google Scholar 

  29. Hayflick, L., The Limited in vitro Lifetime of Human Diploid Cell Strains, Exp. Cell Res., 1965, vol. 37, pp. 614–636.

    Article  PubMed  CAS  Google Scholar 

  30. Ohtani, N., Mann, D.J., and Hara, E., Cellular Senescence: Its Role in Tumor Suppression and Aging, Cancer Sci., 2009, vol. 100, no. 5, pp. 792–797.

    Article  PubMed  CAS  Google Scholar 

  31. Lleonart, M.E., Artero-Castro, A., and Kondoh, H., Senescence Induction: A Possible Cancer Therapy, Mol. Cancer, 2009, vol. 8, no. 1, p. 3.

    Article  PubMed  CAS  Google Scholar 

  32. Garbe, J.C., Bhattacharya, S., Merchant, B., et al., Molecular Distinctions Between Stasis and Telomere Attrition Senescence Barriers Shown by Long-Term Culture of Normal Human Mammary Epithelial Cells, Cancer Res., 2009, vol. 69, no. 19, pp. 7557–7568.

    Article  PubMed  CAS  Google Scholar 

  33. McDuff, F.K. and Turner, S.D., Jailbreak: Oncogene-Induced Senescence and Its Evasion, Cell Signal., 2011, vol. 23, no. 1, pp. 6–13.

    Article  PubMed  CAS  Google Scholar 

  34. Evans, R.J., Wyllie, F.S., Wynford-Thomas, D., et al., A P53-Dependent, Telomere-Independent Proliferative Life Span Barrier in Human Astrocytes Consistent with the Molecular Genetics of Glioma Development, Cancer Res., 2003, vol. 63, no. 16, pp. 4854–4861.

    PubMed  CAS  Google Scholar 

  35. Fu, B., Quintero, J., and Baker, C.C., Keratinocyte Growth Conditions Modulate Telomerase Expression, Senescence, and Immortalization by Human Papillomavirus Type 16 E6 and E7 Oncogenes, Cancer Res., 2003, vol. 63, no. 22, pp. 7815–7824.

    PubMed  CAS  Google Scholar 

  36. Courtois-Cox, S., Jones, S.L., and Cichowski, K., Many Roads Lead to Oncogene-Induced Senescence, Oncogene, 2008, vol. 27, no. 20, pp. 2801–2809.

    Article  PubMed  CAS  Google Scholar 

  37. Hydbring, P. and Larsson, L.G., Cdk2: A Key Regulator of the Senescence Control Function of Myc, Aging (Albany New York), 2010, Vol. 2, no. 4, pp. 244–250.

    CAS  Google Scholar 

  38. Voghel, G., Thorin-Trescases, N., Mamarbachi, A.M., et al., Endogenous Oxidative Stress Prevents Telomerase-Dependent Immortalization of Human Endothelial Cells, Mech. Ageing Dev., 2010, vol. 131, no. 5, pp. 354–363.

    Article  PubMed  CAS  Google Scholar 

  39. Yaswen, P. and Stampfer, M.R., Molecular Changes Accompanying Senescence and Immortalization of Cultured Human Mammary Epithelial Cells, Int. J. Biochem. Cell Biol., 2002, vol. 34, no. 11, pp. 1382–1394.

    Article  PubMed  CAS  Google Scholar 

  40. Evan, G.I., D’Adda Di Fagagna F. Cellular Senescence: Hot or What? Curr. Opin. Genet. Dev., 2009, vol. 19, no. 1, pp. 25–31.

    Article  PubMed  CAS  Google Scholar 

  41. Fridman, A.L. and Tainsky, M.A., Critical Pathways in Cellular Senescence and Immortalization Revealed by Gene Expression Profiling, Oncogene, 2008, vol. 27, no. 46, pp. 5975–5987.

    Article  PubMed  CAS  Google Scholar 

  42. Indran, I.R., Hande, M.P., and Pervaiz, S., Tumor Cell Redox State and Mitochondria at the Center of the Non-Canonical Activity of Telomerase Reverse Transcriptase, Mol. Aspects Med., 2010, vol. 31, no. 1, pp. 21–28.

    Article  PubMed  CAS  Google Scholar 

  43. Kim, D. and Chung, J., Akt: Versatile Mediator of Cell Survival and Beyond, J. Biochem. Mol. Biol., 2002, vol. 35, no. 1, pp. 106–115.

    Article  PubMed  CAS  Google Scholar 

  44. Bitto, A., Sell, C., Crowe, E., et al., Stress-Induced Senescence in Human and Rodent Astrocytes, Exp. Cell Res., 2010, no. 17, pp. 2961–2968.

  45. Heeg, S., Doebele, M., von Werder, A., and Opitz, O.G., In vitro Transformation Models: Modeling Human Cancer, Cell Cycle, 2006, vol. 5, no. 6, pp. 630–634.

    Article  PubMed  CAS  Google Scholar 

  46. Rao, K., Alper, O., Opheim, K.E., et al., Cytogenetic Characterization and H-ras Associated Transformation of Immortalized Human Mammary Epithelial Cells, Cancer Cell Int., 2006, vol. 6, no. 15.

  47. Hong, H.X., Zhang, Y.M., Xu, H., et al., Immortalization of Swine Umbilical Vein Endothelial Cells with Human Telomerase Reverse Transcriptase, Mol. Cells, 2007, vol. 24, no. 3, pp. 358–363.

    PubMed  CAS  Google Scholar 

  48. Cowling, V.H. and Cole, M.D., E-Cadherin Repression Contributes to c-myc-Induced Epithelial Cell Transformation, Oncogene, 2007, vol. 26, no. 24, pp. 3582–3586.

    Article  PubMed  CAS  Google Scholar 

  49. De Filippis, L., Ferrari, D., Rota, Nodari L., et al., Immortalization of Human Neural Stem Cells with the c-myc Mutant T58A, PLoS One, 2008, vol. 3, no. 10, p. e3310.

    Article  PubMed  CAS  Google Scholar 

  50. Abken, H., Butzler, C., and Willecke, K., Immortalization of Human Lymphocytes by Transfection with DNA from Mouse L929 Cytoplasts, Proc. Nat. Acad. Sci. USA, 1988, vol. 85, no. 2, pp. 468–472.

    Article  PubMed  CAS  Google Scholar 

  51. Shay, J.W., Wright, W.E., and Werbin, H., Defining the Molecular Mechanisms of Human Immortalization, Biochim. Biophys. Acta, 1991, vol. 1072, no. 1, pp. 1–7.

    PubMed  CAS  Google Scholar 

  52. Yuan, H., Veldman, T., Rundell, K., and Schlegel, R., Simian Virus 40 Small Tumor Antigen Activates AKT and Telomerase and Induces Anchorage-Independent Growth of Human Epithelial Cells, J. Virol., 2002, vol. 76, no. 21, pp. 10685–10691.

    Article  PubMed  CAS  Google Scholar 

  53. Price, T.N., Burke, J.F., and Mayne, L.V., A Novel Human Astrocyte Cell Line (A735) with Astrocyte-Specific Neurotransmitter Function, In Vitro Cell Dev. Biol. Anim., 1999, vol. 35, no. 5, pp. 279–288.

    Article  CAS  Google Scholar 

  54. Radna, R.L., Caton, Y., Jha, K.K., et al., Growth of Immortal Simian Virus 40 TsA-Transformed Human Fibroblasts Is Temperature Dependent, Mol. Cell. Biol., 1989, vol. 9, no. 7, pp. 3093–3096.

    PubMed  CAS  Google Scholar 

  55. Shay, J.W. and Wright, W.E., Quantitation of the Frequency of Immortalization of Normal Human Diploid Fibroblasts by SV40 Large T-Antigen, Exp. Cell Res., 1989, vol. 184, no. 1, pp. 109–118.

    Article  PubMed  CAS  Google Scholar 

  56. Wright, W.E., Pereira-Smith, O.M., and Shay, J.W., Reversible Cellular Senescence: Implications for Immortalization of Normal Human Diploid Fibroblasts, Mol. Cell. Biol., 1989, vol. 9, no. 7, pp. 3088–3092.

    PubMed  CAS  Google Scholar 

  57. Coca-Prados, M. and Wax, M.B., Transformation of Human Ciliary Epithelial Cells by Simian Virus 40: Induction of Cell Proliferation and Retention of beta 2-Adrenergic Receptors, Proc. Nat. Acad. Sci. U.S.A., 1986, vol. 83, no. 22, pp. 8754–8758.

    Article  CAS  Google Scholar 

  58. Ishida, T., Ando, H., Nomura, S., et al., Establishment and Characterization of Human Fetal Liver Epithelial Cell Line Transfected with SV40 T Antigen, Proc. Soc. Exp. Biol. Med., 1995, vol. 209, no. 3, pp. 251–256.

    PubMed  CAS  Google Scholar 

  59. Chang, S.E., Keen, J., Lane, E.B., and Taylor-Papadimitriou, J., Establishment and Characterization of SV40-Transformed Human Breast Epithelial Cell Lines, Cancer Res., 1982, vol. 42, no. 5, pp. 2040–2053.

    PubMed  CAS  Google Scholar 

  60. Kaighn, M.E., Reddel, R.R., Lechner, J.F., et al., Transformation of Human Neonatal Prostate Epithelial Cells by Strontium Phosphate Transfection with a Plasmid Containing SV40 Early Region Genes, Cancer Res., 1989, no. 11, pp. 3050–3056.

  61. Gruenert, D.C., Basbaum, C.B., Welsh, M.J., et al., Characterization of Human Tracheal Epithelial Cells Transformed by an Origin-Defective Simian Virus 40, Proc. Nat. Acad. Sci. U.S.A., 1988, vol. 85, no. 16, pp. 5951–5955.

    Article  CAS  Google Scholar 

  62. Christian, B.J., Loretz, L.J., Oberley, T.D., and Reznikoff, C.A., Characterization of Human Uroepithelial Cells Immortalized in vitro by Simian Virus 40, Cancer Res., 1987, vol. 47, no. 22, pp. 6066–6073.

    PubMed  CAS  Google Scholar 

  63. Woodworth, C.D., Bowden, P.E., Doniger, J., et al., Characterization of Normal Human Exocervical Epithelial Cells Immortalized in vitro by Papillomavirus Types 16 and 18 DNA, Cancer Res., 1988, vol. 48, no. 16, pp. 4620–4628.

    PubMed  CAS  Google Scholar 

  64. Pecoraro, G., Morgan, D., and Defendi, V., Differential Effects of Human Papillomavirus Type 6, 16, and 18 DNAs on Immortalization and Transformation of Human Cervical Epithelial Cells, Proc. Nat. Acad. Sci. U.S.A., 1989, vol. 86, no. 2, pp. 563–567.

    Article  CAS  Google Scholar 

  65. Durst, M., Dzarlieva-Petrusevska, R.T., Boukamp, P., et al., Molecular and Cytogenetic Analysis of Immortalized Human Primary Keratinocytes Obtained after Transfection with Human Papillomavirus Type 16 DNA, Oncogene, 1987, vol. 1, no. 3, pp. 251–256.

    PubMed  CAS  Google Scholar 

  66. Pirisi, L., Yasumoto, S., Feller, M., et al., Transformation of Human Fibroblasts and Keratinocytes with Human Papillomavirus Type 16 DNA, J. Virol., 1987, vol. 61, no. 4, pp. 1061–1066.

    PubMed  CAS  Google Scholar 

  67. Munger, K., Werness, B.A., Dyson, N., et al., Complex Formation of Human Papillomavirus E7 Proteins with the Retinoblastoma Tumor Suppressor Gene Product, EMBO J., 1989, vol. 8, no. 13, pp. 4099–4105.

    PubMed  CAS  Google Scholar 

  68. Hudson, J.B., Bedell, M.A., McCance, D.J., and Laiminis, L.A., Immortalization and Altered Differentiation of Human Keratinocytes in vitro by the E6 and E7 Open Reading Frames of Human Papillomavirus Type 18, J. Virol., 1990, vol. 64, no. 2, pp. 519–526.

    PubMed  CAS  Google Scholar 

  69. Zhang, H., Jin, Y., Chen, X., et al., Papillomavirus Type 16 E6/E7 and Human Telomerase Reverse Transcriptase in Esophageal Cell Immortalization and Early Transformation, Cancer Lett., 2007, vol. 245, nos. 1–2, pp. 184–194.

    Article  PubMed  CAS  Google Scholar 

  70. Woodworth, C.D., Doniger, J., and DiPaolo, J.A., Immortalization of Human Foreskin Keratinocytes by Various Human Papillomavirus DNAs Corresponds to Their Association with Cervical Carcinoma, J. Virol., 1989, vol. 63, no. 1, pp. 159–164.

    PubMed  CAS  Google Scholar 

  71. Blanton, R.A., Perez-Reyes, N., Merrick, D.T., and McDougall, J.K., Epithelial Cells Immortalized by Human Papillomaviruses Have Premalignant Characteristics in Organotypic Culture, Am. J. Pathol., 1991, vol. 138, no. 3, pp. 673–685.

    PubMed  CAS  Google Scholar 

  72. Tsutsui, T., Kumakura, S., Yamamoto, A., et al., Association of P16 (INK4a) and PRb Inactivation with Immortalization of Human Cells, Carcinogenesis, 2002, vol. 23, no. 12, pp. 2111–2117.

    Article  PubMed  CAS  Google Scholar 

  73. Halbert, C.L., Demers, G.W., and Galloway, D.A., The E7 Gene of Human Papillomavirus Type 16 Is Sufficient for Immortalization of Human Epithelial Cells, J. Virol., 1991, vol. 65, no. 1, pp. 473–478.

    PubMed  CAS  Google Scholar 

  74. Band, V., Zajchowski, D., Kulesa, V., and Sager, R., Human Papilloma Virus DNAs Immortalize Normal Human Mammary Epithelial Cells and Reduce Their Growth Factor Requirements, Proc. Nat. Acad. Sci. U.S.A., 1990, vol. 87, no. 1, pp. 463–467.

    Article  CAS  Google Scholar 

  75. Wazer, D.E., Liu, X.L., Chu, Q., et al., Immortalization of Distinct Human Mammary Epithelial Cell Types by Human Papilloma Virus 16 E6 or E7, Proc. Nat. Acad. Sci. U.S.A., 1995, vol. 92, no. 9, pp. 3687–3691.

    Article  CAS  Google Scholar 

  76. Reznikoff, C.A., Belair, C., Savelieva, E., et al., Long-Term Genome Stability and Minimal Genotypic and Phenotypic Alterations in HPV16 E7-, but not E6-Immortalized Human Uroepithelial Cells, Genes Dev., 1994, vol. 8, no. 18, pp. 2227–2240.

    Article  PubMed  CAS  Google Scholar 

  77. Carmean, N., Kosman, J.W., Leaf, E.M., et al., Immortalization of Human Urothelial Cells by Human Papillomavirus Type 16 E6 and E7 Genes in a Defined Serum-Free System, Cell Prolif., 2007, vol. 40, no. 2, pp. 166–184.

    Article  PubMed  CAS  Google Scholar 

  78. Graham, F.L., Smiley, J., Russell, W.C., and Nairn, R., Characteristics of a Human Cell Line Transformed by DNA from Human Adenovirus Type 5, J. Gen. Virol., 1977, vol. 36, no. 1, pp. 59–74.

    Article  PubMed  CAS  Google Scholar 

  79. Reddel, R.R., Ke, Y., Gerwin, B.I., et al., Transformation of Human Bronchial Epithelial Cells by Infection with SV40 or Adenovirus-12 SV40 Hybrid Virus, or Transfection via Strontium Phosphate Coprecipitation with a Plasmid Containing SV40 Early Region Genes, Cancer Res., 1988, vol. 48, no. 7, pp. 1904–1909.

    PubMed  CAS  Google Scholar 

  80. Rhim, J.S., Jay, G., Arnstein, P., et al., Neoplastic Transformation of Human Epidermal Keratinocytes by AD12-SV40 and Kirsten Sarcoma Viruses, Science, 1985, vol. 227, no. 4691, pp. 1250–1252.

    Article  PubMed  CAS  Google Scholar 

  81. Farwell, D.G., Shera, K.A., Koop, J.I., et al., Genetic and Epigenetic Changes in Human Epithelial Cells Immortalized by Telomerase, Am. J. Pathol., 2000, vol. 156, no. 5, pp. 1537–1547.

    Article  PubMed  CAS  Google Scholar 

  82. Tao, Q., Lv, B., Qiao, B., et al., Immortalization of Ameloblastoma Cells via Reactivation of Telomerase Function: Phenotypic and Molecular Characteristics, Oral Oncol., 2009, vol. 45, no. 12, pp. 239–244.

    Article  CAS  Google Scholar 

  83. Jiang, X.R., Jimenez, G., Chang, E., et al., Telomerase Expression in Human Somatic Cells Does Not Induce Changes Associated with a Transformed Phenotype, Nat. Genet., 1999, vol. 21, no. 1, pp. 111–114.

    Article  PubMed  CAS  Google Scholar 

  84. Morales, C.P., Holt, S.E., Ouellette, M., et al., Absence of Cancer-Associated Changes in Human Fibroblasts Immortalized with Telomerase, Nat. Genet., 1999, vol. 21, no. 1, pp. 115–118.

    Article  PubMed  CAS  Google Scholar 

  85. Noble, J.R., Zhong, Z.H., Neumann, A.A., et al., Alterations in the P16(INK4a) and P53 Tumor Suppressor Genes of HTERT-Immortalized Human Fibroblasts, Oncogene, 2004, vol. 23, no. 17, pp. 3116–3121.

    Article  PubMed  CAS  Google Scholar 

  86. Dickson, M.A., Hahn, W.C., Ino, Y., et al., Human Keratinocytes That Express HTERT and Also Bypass a P16(INK4a)-Enforced Mechanism That Limits Life Span Become Immortal Yet Retain Normal Growth and Differentiation Characteristics, Mol. Cell. Biol., 2000, vol. 20, no. 4, pp. 1436–1447.

    Article  PubMed  CAS  Google Scholar 

  87. Kim, H., Farris, J., Christman, S.A., et al., Events in the Immortalizing Process of Primary Human Mammary Epithelial Cells by the Catalytic Subunit of Human Telomerase, Biochem. J., 2002, vol. 365, no. 3, pp. 765–772.

    PubMed  CAS  Google Scholar 

  88. Benanti, J.A., Wang, M.L., Myers, H.E., et al., Epigenetic Down-Regulation of ARF Expression Is a Selection Step in Immortalization of Human Fibroblasts by c-myc, Mol. Cancer Res., 2007, vol. 5, no. 11, pp. 1181–1189.

    Article  PubMed  CAS  Google Scholar 

  89. Gil, J., Kerai, P., Lleonart, M., et al., Immortalization of Primary Human Prostate Epithelial Cells by c-myc, Cancer Res., 2005, vol. 65, no. 6, pp. 2179–2185.

    Article  PubMed  CAS  Google Scholar 

  90. Nonet, G.H., Stampfer, M.R., Chin, K., et al., The ZNF217 Gene Amplified in Breast Cancers Promotes Immortalization of Human Mammary Epithelial Cells, Cancer Res., 2001, vol. 61, no. 4, pp. 1250–1254.

    PubMed  CAS  Google Scholar 

  91. Opitz, O.G., Suliman, Y., Hahn, W.C., et al., Cyclin D1 Overexpression and P53 Inactivation Immortalize Primary Oral Keratinocytes by a Telomerase-Independent Mechanism, J. Clin. Invest., 2001, vol. 108, no. 5, pp. 725–732.

    PubMed  CAS  Google Scholar 

  92. Pipas, J.M., SV40: Cell Transformation and Tumorigenesis, Virology, 2009, vol. 384, no. 2, pp. 294–303.

    Article  PubMed  CAS  Google Scholar 

  93. Levine, A.J., The Common Mechanisms of Transformation by the Small DNA Tumor Viruses: The Inactivation of Tumor Suppressor Gene Products: P53, Virology, 2009, vol. 384, no. 2, pp. 285–293.

    Article  PubMed  CAS  Google Scholar 

  94. Ghittoni, R., Accardi, R., Hasan, U., et al., The Biological Properties of E6 and E7 Oncoproteins from Human Papillomaviruses, Virus Genes, 2010, vol. 40, no. 1, pp. 1–13.

    Article  PubMed  CAS  Google Scholar 

  95. Huschtscha, L.I. and Reddel, R.R., P16(INK4a) and the Control of Cellular Proliferative Life Span, Carcinogenesis, 1999, vol. 20, no. 6, pp. 921–926.

    Article  PubMed  CAS  Google Scholar 

  96. Haga, K., Ohno, S., Yugawa, T., et al., Efficient Immortalization of Primary Human Cells by P16INK4a-Specific Short Hairpin RNA or Bmi-1, Combined with Introduction of hTERT, Cancer Sci., 2007, vol. 98, no. 2, pp. 147–154.

    Article  PubMed  CAS  Google Scholar 

  97. Zhao, Y., Wang, S., Popova, E.Y., et al., Rearrangement of Upstream Sequences of the hTERT Gene during Cellular Immortalization, Genes Chromosomes Cancer, 2009, no. 11, pp. 963–974.

  98. Frisch, S.M. and Mymryk, J.S., Adenovirus-5 E1A: Paradox and Paradigm, Nat. Rev. Mol. Cell. Biol., 2002, vol. 3, no. 6, pp. 441–452.

    Article  PubMed  CAS  Google Scholar 

  99. Cesare, A.J. and Reddel, R.R., Telomere Uncapping and Alternative Lengthening of Telomeres, Mech. Ageing Dev., 2008, vol. 129, nos 1/2, pp. 99–108.

    Article  PubMed  CAS  Google Scholar 

  100. Henson, J.D. and Reddel, R.R., Assaying and Investigating Alternative Lengthening of Telomeres Activity in Human Cells and Cancers, FEBS Lett., 2010, vol. 584, no. 17, pp. 3800–3811.

    Article  PubMed  CAS  Google Scholar 

  101. Adhikary, S. and Eilers, M., Transcriptional Regulation and Transformation by Myc Proteins, Nat. Rev. Mol. Cell. Biol., 2005, vol. 6, no. 8, pp. 635–645.

    Article  PubMed  CAS  Google Scholar 

  102. Yin, X.Y., Grove, L., Datta, N.S., et al., Inverse Regulation of Cyclin B1 by c-myc and P53 and Induction of Tetraploidy by Cyclin B1 Overexpression, Cancer Res., 2001, vol. 61, no. 17, pp. 6487–6493.

    PubMed  CAS  Google Scholar 

  103. Feng, M., Li, Z., Aau, M., et al., Myc/MiR-378/ TOB2/Cyclin D1 Functional Module Regulates Oncogenic Transformation, Oncogene, 2011, vol. 30, no. 19, pp. 2242–2251.

    Article  PubMed  CAS  Google Scholar 

  104. Jung, Y.S., Qian, Y., and Chen, X., Examination of the Expanding Pathways for the Regulation of P21 Expression and Activity, Cell Signal., 2010, vol. 22, no. 7, pp. 1003–1012.

    Article  PubMed  CAS  Google Scholar 

  105. Gartel, A.L., Ye, X., Goufman, E., et al., Myc Represses the P21(WAF1/CIP1) Promoter and Interacts with Sp1/Sp3, Proc. Nat. Acad. Sci. U.S.A., 2001, vol. 98, no. 8, pp. 4510–4515.

    Article  CAS  Google Scholar 

  106. Lin, C.P., Liu, C.R., Lee, C.N., et al., Targeting c-myc as a Novel Approach for Hepatocellular Carcinoma, World J. Hepatol., 2010, vol. 2, no. 1, pp. 16–20.

    PubMed  Google Scholar 

  107. Bartlett, P.F., Reid, H.H., Bailey, K.A., and Bernard, O., Immortalization of Mouse Neural Precursor Cells by the c-myc Oncogene, Proc. Nat. Acad. Sci. U.S.A., 1988, no. 9, pp. 3255–3259.

  108. Gregory, M.A., Qi, Y., and Hann, S.R., The ARF Tumor Suppressor: Keeping Myc on a Leash, Cell Cycle, 2005, vol. 4, no. 2, pp. 249–252.

    Article  PubMed  CAS  Google Scholar 

  109. Dimri, M., Naramura, M., Duan, L., et al., Modeling Breast Cancer-Associated C-Src and EGFR Overexpression in Human MECs: C-Src and EGFR Cooperatively Promote Aberrant Three-Dimensional Acinar Structure and Invasive Behavior, Cancer Res., 2007, no. 9, pp. 4164–4172.

  110. Mills, A.A., Throwing the Cancer Switch: Reciprocal Roles of Polycomb and Trithorax Proteins, Nat. Rev. Cancer, 2010, vol. 10, no. 10, pp. 669–682.

    Article  PubMed  CAS  Google Scholar 

  111. Dimri, G.P., Martinez, J.L., Jacobs, J.J., et al., The Bmi-1 Oncogene Induces Telomerase Activity and Immortalizes Human Mammary Epithelial Cells, Cancer Res., 2002, vol. 62, no. 16, pp. 4736–4745.

    PubMed  CAS  Google Scholar 

  112. Song, L.B., Zeng, M.S., Liao, W.T., et al., Bmi-1 Is a Novel Molecular Marker of Nasopharyngeal Carcinoma Progression and Immortalizes Primary Human Nasopharyngeal Epithelial Cells, Cancer Res., 2006, vol. 66, no. 12, pp. 6225–6232.

    Article  PubMed  CAS  Google Scholar 

  113. Kim, R.H., Kang, M.K., Shin, K.H., et al., Bmi-1 Cooperates with Human Papillomavirus Type 16 E6 to Immortalize Normal Human Oral Keratinocytes, Exp. Cell Res., 2007, vol. 313, no. 3, pp. 462–72.

    Article  PubMed  CAS  Google Scholar 

  114. Meng, S., Luo, M., Sun, H., et al., Identification and Characterization of Bmi-1-Responding Element within the Human P16 Promoter, J. Biol. Chem., 2010, vol. 285, no. 43, pp. 33219–33229.

    Article  PubMed  CAS  Google Scholar 

  115. Yochum, G.S., McWeeney, S., Rajaraman, V., et al., Serial Analysis of Chromatin Occupancy Identifies beta-Catenin Target Genes in Colorectal Carcinoma Cells, Proc. Nat. Acad. Sci. USA, 2007, vol. 104, no. 9, pp. 3324–3329.

    Article  PubMed  CAS  Google Scholar 

  116. Mosimann, C., Hausmann, G., and Basler, K., beta-Catenin Hits Chromatin: Regulation of Wnt Target Gene Activation, Nat. Rev. Mol. Cell Biol., 2009, vol. 10, no. 4, pp. 276–286.

    Article  PubMed  CAS  Google Scholar 

  117. Delmas, V., Beermann, F., Martinozzi, S., et al., Catenin Induces Immortalization of Melanocytes by Suppressing P16INK4a Expression and Cooperates with N-ras in Melanoma Development, Genes Dev., 2007, vol. 21, no. 22, pp. 2923–2935.

    Article  PubMed  CAS  Google Scholar 

  118. Kim, J., Lee, J.H., and Iyer, V.R., Global Identification of myc Target Genes Reveals Its Direct Role in Mitochondrial Biogenesis and Its E-Box Usage In vivo, PLoS ONE, 2008, vol. 3, no. 3, p. e1798.

  119. Krig, S.R., Jin, V.X., Bieda, M.C., et al., Identification of Genes Directly Regulated by the Oncogene ZNF217 Using Chromatin Immunoprecipitation (ChIP)-Chip Assays, J. Biol. Chem., 2007, vol. 282, no. 13, pp. 9703–9712.

    Article  PubMed  CAS  Google Scholar 

  120. Zeller, K.I., Zhao, X., Lee, C.W., et al., Global Mapping of c-myc Binding Sites and Target Gene Networks in Human B Cells, Proc. Nat. Acad. Sci. U.S.A., 2006, vol. 103, no. 47, pp. 17834–17839.

    Article  CAS  Google Scholar 

  121. Lawlor, E.R., Soucek, L., Brown-Swigart, L., et al., Reversible Kinetic Analysis of myc Targets in vivo Provides Novel Insights into myc-Mediated Tumorigenesis, Cancer Res., 2006, vol. 66, no. 9, pp. 4591–4601.

    Article  PubMed  CAS  Google Scholar 

  122. Wu, C.H., Sahoo, D., Arvanitis, C., et al., Combined Analysis of Murine and Human Microarrays and ChIP Analysis Reveals Genes Associated with the Ability of MYC to Maintain Tumorigenesis, PLoS Genet, 2008, vol. 4, no. 6, p. e1000090.

    Article  PubMed  CAS  Google Scholar 

  123. Menssen, A. and Hermeking, H., Characterization of the C-MYC-Regulated Transcriptome by SAGE: Identification and Analysis of C-MYC Target Genes, Proc. Nat. Acad. Sci. U.S.A., 2002, vol. 99, no. 9, pp. 6274–6279.

    Article  CAS  Google Scholar 

  124. Connell, B.C., Cheung, A.F., Simkevich, C.P., et al., A Large Scale Genetic Analysis of c-myc-Regulated Gene Expression Patterns, J. Biol. Chem., 2003, vol. 278, no. 14, pp. 12563–12573.

    Article  Google Scholar 

  125. Rea, M.A., Zhou, L., Qin, Q., et al., Spontaneous Immortalization of Human Epidermal Cells with Naturally Elevated Telomerase, J. Invest. Dermatol., 2006, vol. 126, no. 11, pp. 2507–2515.

    Article  PubMed  CAS  Google Scholar 

  126. Brandl, C., Kaesbauer, J., Weber, B.H., and Morsczeck, C., Spontaneous Immortalization of Neural Crest-Derived Corneal Progenitor Cells after Chromosomal Aberration, Cell Prolif., 2010, vol. 43, no. 4, pp. 372–377.

    Article  PubMed  CAS  Google Scholar 

  127. Zhao, C., Meng, L., Hu, H., et al., Spontaneously Immortalised Bovine Mammary Epithelial Cells Exhibit a Distinct Gene Expression Pattern from the Breast Cancer Cells, BMC Cell Biol., 2010, vol. 11, no. 82.

  128. Ohtani, N., Yamakoshi, K., Takahashi, A., and Hara, E., Real-Time in vivo Imaging of P16 Gene Expression: A New Approach to Study Senescence Stress Signaling in Living Animals, Cell Div., 2010, vol. 5, no. 1.

  129. Novak, P., Jensen, T.J., Garbe, J.C., et al., Stepwise DNA Methylation Changes Are Linked to Escape from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization, Cancer Res., 2009, vol. 69, no. 12, pp. 5251–5258.

    Article  PubMed  CAS  Google Scholar 

  130. Darbro, B.W., Lee, K.M., Nguyen, N.K., et al., Methylation of the P16(INK4a) Promoter Region in Telomerase Immortalized Human Keratinocytes Cocultured with Feeder Cells, Oncogene, 2006, vol. 25, no. 56, pp. 7421–7433.

    Article  PubMed  CAS  Google Scholar 

  131. Hinshelwood, R.A., Melki, J.R., Huschtscha, L.I., et al., Aberrant de novo Methylation of the P16INK4A CpG Island Is Initiated Post Gene Silencing in Association with Chromatin Remodelling and Mimics Nucleosome Positioning, Hum. Mol. Genet., 2009, no. 16, pp. 3098–3109.

  132. Agherbi, H., Gaussmann-Wengerm A., Verthuy, C., et al., Polycomb Mediated Epigenetic Silencing and Replication Timing at the INK4a/ARF Locus during Senescence, PLoS One, 2009, vol. 4, no. 5, p. e5622.

    Article  PubMed  CAS  Google Scholar 

  133. Maertens, G.N., El Messaoudi-Aubert, S., Racek, T., et al., Several Distinct Polycomb Complexes Regulate and Co-Localize on the INK4a Tumor Suppressor Locus, PLoS One, 2009, vol. 4, no. 7, p. e6380.

    Article  PubMed  CAS  Google Scholar 

  134. Agger, K., Cloos, P.A., Rudkjaer, L., et al., The H3K27me3 Demethylase JMJD3 Contributes to the Activation of the INK4A-ARF Locus in Response to Oncogene- and Stress-Induced Senescence, Genes Dev., 2009, vol. 23, no. 10, pp. 1171–1176.

    Article  PubMed  CAS  Google Scholar 

  135. Maertens, G.N., El Messaoudi-Aubert, S., Elderkin, S., et al., Ubiquitin-Specific Proteases 7 and 11 Modulate Polycomb Regulation of the INK4a Tumour Suppressor, EMBO J., 2010, vol. 29, no. 15, pp. 2553–2565.

    Article  PubMed  CAS  Google Scholar 

  136. Negishi, M., Saraya, A., Mochizuki, S., et al., A Novel Zinc Finger Protein Zfp277 Mediates Transcriptional Repression of the Ink4a/Arf Locus through Polycomb Repressive Complex 1, PLoS One, 2010, vol. 5, no. 8, p. e12373.

    Article  PubMed  CAS  Google Scholar 

  137. Meng, L., Gabai, V.L., and Sherman, M.Y., Heat-Shock Transcription Factor HSF1 Has a Critical Role in Human Epidermal Growth Factor Receptor-2-Induced Cellular Transformation and Tumorigenesis, Oncogene, 2010, vol. 29, no. 37, pp. 5204–5213.

    Article  PubMed  CAS  Google Scholar 

  138. Romagosa, C., Simonetti, S., Lopez-Vicente, L., et al., P16(Ink4a) Overexpression in Cancer: A Tumor Suppressor Gene Associated with Senescence and High-Grade Tumors, Oncogene, 2011, vol. 30, no. 18, pp. 2087–2097.

    Article  PubMed  CAS  Google Scholar 

  139. Odell, A., Askham, J., Whibley, C., and Hollstein, M., How to Become Immortal: Let MEFs Count the Ways, Aging (Albany New York), 2010, vol. 2, no. 3, pp. 160–165.

    PubMed  CAS  Google Scholar 

  140. Mondello, C., Chiesa, M., Rebuzzini, P., et al., Karyotype Instability and Anchorage-Independent Growth in Telomerase-Immortalized Fibroblasts from Two Centenarian Individuals, Biochem. Biophys. Res. Commun., 2003, vol. 308, no. 4, pp. 914–921.

    Article  PubMed  CAS  Google Scholar 

  141. Milyavsky, M., Shats, I., Erez, N., et al., Prolonged Culture of Telomerase-Immortalized Human Fibroblasts Leads to a Premalignant Phenotype, Cancer Res., 2003, vol. 63, no. 21, pp. 7147–7157.

    PubMed  CAS  Google Scholar 

  142. Pirzio, L.M., Freulet-Marriere, M.A., Bai, Y., et al., Human Fibroblasts Expressing HTERT Show Remarkable Karyotype Stability Even after Exposure to Ionizing Radiation, Cytogenet. Genome Res., 2004, vol. 104, nos 1–4, pp. 87–94.

    Article  PubMed  CAS  Google Scholar 

  143. Cui, W., Aslam, S., Fletcher, J., et al., Stabilization of Telomere Length and Karyotypic Stability Are Directly Correlated with the Level of hTERT Gene Expression in Primary Fibroblasts, J. Biol. Chem., 2002, vol. 277, no. 41, pp. 38531–38539.

    Article  PubMed  CAS  Google Scholar 

  144. Wen, V.W., Wu, K., Baksh, S., et al., Telomere-Driven Karyotypic Complexity Concurs with P16INK4a Inactivation in TP53-Competent Immortal Endothelial Cells, Cancer Res., 2006, vol. 66, no. 22, pp. 10691–10700.

    Article  PubMed  CAS  Google Scholar 

  145. Piao, C.Q., Liu, L., Zhao, Y.L., et al., Immortalization of Human Small Airway Epithelial Cells by Ectopic Expression of Telomerase, Carcinogenesis, 2005, vol. 26, no. 4, pp. 725–731.

    Article  PubMed  CAS  Google Scholar 

  146. Varella-Garcia, M., Chen, L., Zheng, X., et al., Karyotypic Characteristics of Human Uterine Leiomyoma and Myometrial Cell Lines Following Telomerase Induction, Cancer Genet. Cytogenet., 2006, vol. 170, no. 1, pp. 71–75.

    Article  PubMed  CAS  Google Scholar 

  147. Takeuchi, M., Takeuchi, K., Kohara, A., et al., Chromosomal Instability in Human Mesenchymal Stem Cells Immortalized with Human Papilloma Virus E6, E7, and hTERT Genes, In Vitro Cell. Dev. Biol. Anim., 2007, vol. 43, nos 3/4, pp. 129–138.

    Article  CAS  Google Scholar 

  148. Haker, B., Fuchs, S., Dierlamm, J., et al., Absence of Oncogenic Transformation Despite Acquisition of Cytogenetic Aberrations in Long-Term Cultured Telomerase-Immortalized Human Fetal Hepatocytes, Cancer Lett., 2007, vol. 256, no. 1, pp. 120–127.

    Article  PubMed  CAS  Google Scholar 

  149. Liu, S., Hatton, M.P., Khandelwal, P., and Sullivan, D.A., Culture, Immortalization, and Characterization of Human Meibomian Gland Epithelial Cells, Invest. Ophthalmol. Vis. Sci., 2010, vol. 51, no. 8, pp. 3993–4005.

    Article  PubMed  Google Scholar 

  150. Watts, P. Stuart, B., et al., Studies on the Phenotype and Karyotype of Immortalized Rabbit Kidney Epithelial Cell Lines, Exp. Cell Res., vol. 1991, no. 2, pp. 458–461.

  151. Yamasaki, K., Kawasaki, S., Young, R.D., et al., Genomic Aberrations and Cellular Heterogeneity in SV40-Immortalized Human Corneal Epithelial Cells, Invest. Ophthalmol. Vis. Sci., 2009, vol. 50, no. 2, pp. 604–613.

    Article  PubMed  Google Scholar 

  152. Kubo, C., Tsutsui, T.W., Tamura, Y., et al., Immortalization of Normal Human Gingival Keratinocytes and Cytological and Cytogenetic Characterization of the Cells, Odontology, 2009, vol. 97, no. 1, pp. 18–31.

    Article  PubMed  CAS  Google Scholar 

  153. Tsao, S.W., Wang, X., Liu, Y., et al., Establishment of Two Immortalized Nasopharyngeal Epithelial Cell Lines Using SV40 Large T and HPV16 E6/E7 Viral Oncogenes, Biochim. Biophys. Acta, 2002, vol. 1590, nos. 1–3, pp. 150–158.

    Article  PubMed  CAS  Google Scholar 

  154. Schiller, J.H., Bittner, G., Wu, S.Q., and Meisner, L., Karyotypic Changes Associated with Spontaneous Acquisition and Loss of Tumorigenicity in a Human Transformed Bronchial Epithelial Cell Line: Evidence for in vivo Selection of Transformed Clones, In vitro Cell Dev. Biol. Anim, 1998, vol. 34, no. 4, pp. 283–289.

    Article  CAS  Google Scholar 

  155. Toouli, C.D., Huschtscha, L.I., Neumann, A.A., et al., Comparison of Human Mammary Epithelial Cells Immortalized by Simian Virus 40 T-Antigen or by the Telomerase Catalytic Subunit, Oncogene, 2002, vol. 21, no. 1, pp. 128–139.

    Article  PubMed  CAS  Google Scholar 

  156. Hashida, T. and Yasumoto, S., Induction of Chromosome Abnormalities in Mouse and Human Epidermal Keratinocytes by the Human Papillomavirus Type 16 E7 Oncogene, J. Gen. Virol., 1991, vol. 72, no. 7, pp. 1569–1577.

    Article  PubMed  CAS  Google Scholar 

  157. Bonin, L.R., Madden, K., Shera, K., et al., Generation and Characterization of Human Smooth Muscle Cell Lines Derived from Atherosclerotic Plaque, Arterioscler., Thromb. Vasc. Biol., 1999, vol. 19, no. 3, pp. 575–587.

    Article  CAS  Google Scholar 

  158. Jin, Y., Feng, H.C., Deng, W., et al., Immortalization of Human Extravillous Cytotrophoblasts by Human Papilloma Virus Gene E6/E7: Sequential Cytogenetic and Molecular Genetic Characterization, Cancer Genet. Cytogenet., 2005, vol. 163, no. 1, pp. 30–37.

    Article  PubMed  CAS  Google Scholar 

  159. Ramirez, R.D., Sheridan, S., Girard, L., et al., Immortalization of Human Bronchial Epithelial Cells in the Absence of Viral Oncoproteins, Cancer Res., 2004, vol. 64, no. 24, pp. 9027–9034.

    Article  PubMed  CAS  Google Scholar 

  160. Todaro, G.J. and Green, H., Quantitative Studies of the Growth of Mouse Embryo Cells in Culture and Their Development into Established Lines, J. Cell Biol., 1963, no. 17, pp. 299–313.

  161. Endo, S., Metzler, M., and Hieber, L., Nonrandom Karyotypic Changes in a Spontaneously Immortalized and Tumorigenic Syrian Hamster Embryo Cell Line, Carcinogenesis, 1994, vol. 15, no. 10, pp. 2387–2390.

    Article  PubMed  CAS  Google Scholar 

  162. Allen-Hoffmann, B.L., Schlosser, S.J., Ivarie, C.A., et al., Normal Growth and Differentiation in a Spontaneously Immortalized Near-Diploid Human Keratinocyte Cell Line, NIKS, J. Invest. Dermatol., 2000, vol. 114, no. 3, pp. 444–455.

    Article  PubMed  CAS  Google Scholar 

  163. Grinchuk, T.M., Pugovkina, N.A., Tarunina, M.V., et al., Immortalized Cell Lines from Murine Embryos Are Characterized by Progressive Destabilization of Their Karyotype Structure, Tsitologiia, 2004, vol. 46, no. 1, pp. 62–68.

    PubMed  CAS  Google Scholar 

  164. Fulcher, M.L., Gabriel, S.E., Olsen, J.C., et al., Novel Human Bronchial Epithelial Cell Lines for Cystic Fibrosis Research, Amer. J. Physiol. Lung Cell Mol. Physiol., 2009, vol. 296, no. 1, pp. 82–91.

    Article  CAS  Google Scholar 

  165. Marella, N.V., Malyavantham, K.S., Wang, J., et al., Cytogenetic and cDNA Microarray Expression Analysis of MCF10 Human Breast Cancer Progression Cell Lines, Cancer Res., 2009, vol. 69, no. 14, pp. 5946–5953.

    Article  PubMed  CAS  Google Scholar 

  166. Fridman, A.L., Tang, L., Kulaeva, O.I., et al., Expression Profiling Identifies Three Pathways Altered in Cellular Immortalization: Interferon, Cell Cycle, and Cytoskeleton, J. Gerontol. A Biol. Sci. Med. Sci., 2006, vol. 61, no. 9, pp. 879–889.

    Article  PubMed  Google Scholar 

  167. Nakamura, H., Fukami, H., Hayashi, Y., et al., Establishment of Immortal Normal and Ataxia Telangiectasia Fibroblast Cell Lines by Introduction of the hTERT Gene, J. Radiat. Res. (Tokyo), 2002, vol. 43, no. 2, pp. 167–174.

    Article  CAS  Google Scholar 

  168. Cui, W., Wylie, D., Aslam, S., et al., Telomerase-Immortalized Sheep Fibroblasts Can Be Reprogrammed by Nuclear Transfer to Undergo Early Development, Biol. Reprod., 2003, vol. 69, no. 1, pp. 15–21.

    Article  PubMed  CAS  Google Scholar 

  169. Krikun, G., Mor, G., Huang, J., et al., Metalloproteinase Expression by Control and Telomerase Immortalized Human Endometrial Endothelial Cells, Histol. Histopathol., 2005, vol. 20, no. 3, pp. 719–724.

    PubMed  CAS  Google Scholar 

  170. Zhang, H., Wang, Y., Zhao, Y., et al., Immortalized Human Neural Progenitor Cells from the Ventral Telencephalon with the Potential to Differentiate into GABAergic Neurons, J. Neurosci. Res., 2008, vol. 86, no. 6, pp. 1217–1226.

    Article  PubMed  CAS  Google Scholar 

  171. Steele, S.L., Wu, Y., Kolb, R.J., et al., Telomerase Immortalization of Principal Cells from Mouse Collecting Duct, Amer. J. Physiol. Renal. Physiol., 2010, vol. 299, no. 6, pp. 1507–1514.

    Article  CAS  Google Scholar 

  172. Unger, C., Gao, S., Cohen, M., et al., Immortalized Human Skin Fibroblast Feeder Cells Support Growth and Maintenance of Both Human Embryonic and Induced Pluripotent Stem Cells, Hum. Reprod., 2009, vol. 24, no. 10, pp. 2567–2581.

    Article  PubMed  CAS  Google Scholar 

  173. Donehower, L.A. and Lozano, G., 20 Years Studying P53 Functions in Genetically Engineered Mice, Nat. Rev. Cancer, 2009, vol. 9, no. 11, pp. 831–841.

    Article  PubMed  CAS  Google Scholar 

  174. Li, M., Fang, X., Baker, D.J., et al., The ATM-P53 Pathway Suppresses Aneuploidy-Induced Tumorigenesis, Proc. Nat. Acad. Sci. U.S.A., 2010, vol. 107, no. 32, pp. 14188–14193.

    Article  CAS  Google Scholar 

  175. Weiss, M.B., Vitolo, M.I., Mohseni, M., et al., Deletion of P53 in Human Mammary Epithelial Cells Causes Chromosomal Instability and Altered Therapeutic Response, Oncogene, 2010, vol. 29, no. 33, pp. 4715–4724.

    Article  PubMed  CAS  Google Scholar 

  176. Thompson, S.L. and Compton, D.A., Proliferation of Aneuploid Human Cells Is Limited by a P53-Dependent Mechanism, J. Cell Biol., 2010, vol. 188, no. 3, pp. 369–381.

    Article  PubMed  CAS  Google Scholar 

  177. Zhao, T. and Xu, Y., P53 and Stem Cells: New Developments and New Concerns, Trends Cell. Biol., 2010, vol. 20, no. 3, pp. 170–175.

    Article  PubMed  CAS  Google Scholar 

  178. Fukasawa, K., P53, Cyclin-Dependent Kinase and Abnormal Amplification of Centrosomes, Biochim. Biophys. Acta, 2008, vol. 1786, no. 1, pp. 15–23.

    PubMed  CAS  Google Scholar 

  179. Yun, U.J., Park, H.D., and Shin, D.Y., P53 Prevents Immature Escaping from Cell Cycle G2 Checkpoint Arrest Through Inhibiting Cdk2-Dependent NF-Y Phosphorylation, Cancer Res. Treat., 2006, vol. 38, no. 4, pp. 224–228.

    Article  PubMed  Google Scholar 

  180. Iovino, F., Lentini, L., Amato, A., and Di Leonardo, A., RB Acute Loss Induces Centrosome Amplification and Aneuploidy in Murine Primary Fibroblasts, Mol. Cancer, 2006, vol. 5, no. 38.

  181. Manning, A.L., Longworth, M.S., and Dyson, N.J., Loss of PRB Causes Centromere Dysfunction and Chromosomal Instability, Genes Dev., 2010, vol. 24, no. 13, pp. 1364–1376.

    Article  PubMed  CAS  Google Scholar 

  182. Thompson, S.L., Bakhoum, S.F., and Compton, D.A., Mechanisms of Chromosomal Instability, Curr. Biol., 2010, vol. 20, no. 6, pp. 285–295.

    Article  CAS  Google Scholar 

  183. Knudsen, E.S. and Knudsen, K.E., Tailoring to RB: Tumour Suppressor Status and Therapeutic Response, Nat. Rev. Cancer, 2008, vol. 8, no. 9, pp. 714–724.

    Article  PubMed  CAS  Google Scholar 

  184. Hernando, E., Nahle, Z., Juan, G., et al., Rb Inactivation Promotes Genomic Instability by Uncoupling Cell Cycle Progression from Mitotic Control, Nature, 2004, vol. 430, no. 7001, pp. 797–802.

    Article  PubMed  CAS  Google Scholar 

  185. Amato, A., Lentini, L., Schillaci, T., et al., RNAi Mediated Acute Depletion of Retinoblastoma Protein (PRb) Promotes Aneuploidy in Human Primary Cells via Micronuclei Formation, BMC Cell. Biol., 2009, vol. 10, no. 79.

  186. Amato, A., Schillaci, T., Lentini, L., and Di Leonardo, A., CENPA Overexpression Promotes Genome Instability in PRb-Depleted Human Cells, Mol. Cancer, 2009, vol. 8, no. 119.

  187. Srinivasan, S.V., Mayhew, C.N., Schwemberger, S., et al., RB Loss Promotes Aberrant Ploidy by Deregulating Levels and Activity of DNA Replication Factors, J. Biol. Chem., 2007, vol. 282, no. 33, pp. 23867–23877.

    Article  PubMed  CAS  Google Scholar 

  188. Bourgo, R.J., Ehmer, U., Sage, J., and Knudsen, E.S., RB Deletion Disrupts Coordination between DNA Replication Licensing and Mitotic Entry in vivo, Mol. Biol. Cell, 2011, vol. 22, no. 7, pp. 931–939.

    Article  PubMed  CAS  Google Scholar 

  189. Coschi, C.H., Martens, A.L., Ritchie, K., et al., Mitotic Chromosome Condensation Mediated by the Retinoblastoma Protein Is Tumor-Suppressive, Genes Dev., 2010, vol. 24, no. 13, pp. 1351–1363.

    Article  PubMed  CAS  Google Scholar 

  190. Wirt, S.E. and Sage, J., P107 in the Public Eye: An Rb Understudy and More, Cell Div., 2010, vol. 5, no. 9.

  191. Weinberg, R.A., Cell the Retinoblastoma Protein and Cell Cycle Control, Cell, 1995, vol. 81, no. 3, pp. 323–330.

    Article  PubMed  CAS  Google Scholar 

  192. Dannenberg, J.H., Schuijff, L., Dekker, M., et al., Tissuespecific Tumor Suppressor Activity of Retinoblastoma Gene Homologs P107 and P130, Genes Dev., 2004, vol. 18, no. 23, pp. 2952–2962.

    Article  PubMed  CAS  Google Scholar 

  193. Dannenberg, J.H. and te Riele, H.P., The Retinoblastoma Gene Family in Cell Cycle Regulation and Suppression of Tumorigenesis, Results Probl. Cell Differ., 2006, vol. 42, pp. 183–225.

    Article  PubMed  CAS  Google Scholar 

  194. Schaffer, B.E., Park, K.S., Yiu, G., et al., Loss of P130 Accelerates Tumor Development in a Mouse Model for Human Small-Cell Lung Carcinoma, Cancer Res., 2010, vol. 70, no. 10, pp. 3877–3883.

    Article  PubMed  CAS  Google Scholar 

  195. Albertson, D.G., Collins, C., McCormick, F., and Gray, J.W., Chromosome Aberrations in Solid Tumors, Nat. Genet., 2003, vol. 34, no. 4, pp. 369–376.

    Article  PubMed  CAS  Google Scholar 

  196. Hanahan, D. and Weinberg, R.A., Hallmarks of Cancer: The Next Generation, Cell, 2011, vol. 144, no. 5, pp. 646–674.

    Article  PubMed  CAS  Google Scholar 

  197. Santarius, T., Shipley, J., Brewer, D., et al., A Census of Amplified and Overexpressed Human Cancer Genes, Nat. Rev. Cancer, 2010, vol. 10, no. 1, pp. 59–64.

    Article  PubMed  CAS  Google Scholar 

  198. Stratton, M.R., Campbell, P.J., and Futreal, P.A., The Cancer Genome, Nature, 2009, vol. 458, no. 7239, pp. 719–724.

    Article  PubMed  CAS  Google Scholar 

  199. Dai, B., Pieper, R.O., Li, D., et al., FoxM1B Regulates NEDD4-1 Expression, Leading to Cellular Transformation and Full Malignant Phenotype in Immortalized Human Astrocytes, Cancer Res., 2010, vol. 70, no. 7, pp. 2951–2961.

    Article  PubMed  CAS  Google Scholar 

  200. Zhang, X., Yu, C., Wilson, K., et al., Malignant Transformation of Non-Neoplastic Barrett’s Epithelial Cells Through Well-Defined Genetic Manipulations, PLoS One, 2010, vol. 5, no. 9, p. e13093.

    Article  PubMed  CAS  Google Scholar 

  201. Zhu, Y., Zhong, X., Zheng, S., et al., Transformation of Immortalized Colorectal Crypt Cells by Microcystin Involving Constitutive Activation of Akt and MAPK Cascade, Carcinogenesis, 2005, vol. 26, no. 7, pp. 1207–1214.

    Article  PubMed  CAS  Google Scholar 

  202. Narko, K., Ristimaki, A., MacPhee, M., et al., Tumorigenic Transformation of Immortalized ECV Endothelial Cells by Cyclooxygenase-1 Overexpression, J. Biol. Chem., 1997, vol. 272, no. 34, pp. 21455–21460.

    Article  PubMed  CAS  Google Scholar 

  203. Shen, Z.Y., Xu, L.Y., Chen, M.H., et al., Progressive Transformation of Immortalized Esophageal Epithelial Cells, World J. Gastroenterol., 2002, vol. 8, no. 6, pp. 976–981.

    PubMed  Google Scholar 

  204. Cheng, J.D., Dunbrack, R.L.Jr., Valianou, M., et al., Promotion of Tumor Growth by Murine Fibroblast Activation Protein, a Serine Protease, in an Animal Model, Cancer Res., 2002, vol. 62, no. 16, pp. 4767–4772.

    PubMed  CAS  Google Scholar 

  205. Hamid, T., Malik, M.T., and Kakar, S.S., Ectopic Expression of PTTG1/Securin Promotes Tumorigenesis in Human Embryonic Kidney Cells, Mol. Cancer, 2005, vol. 4, no. 3.

  206. Li, A., Zhang, X.S., Jiang, J.H., et al., Transcriptional Expression of RPMS1 in Nasopharyngeal Carcinoma and Its Oncogenic Potential, Cell Cycle, 2005, vol. 4, no. 2, pp. 304–309.

    PubMed  CAS  Google Scholar 

  207. Castiglioni, F., Tagliabue, E., Campiglio, M., et al., Role of Exon-16-Deleted HER2 in Breast Carcinomas, Endocr. Relat. Cancer, 2006, vol. 13, no. 1, pp. 221–232.

    Article  PubMed  CAS  Google Scholar 

  208. Wang, Y.L., Wang, Y., Tong, L., and Wei, Q., Overexpression of Calcineurin B Subunit (CnB) Enhances the Oncogenic Potential of HEK293 Cells, Cancer Sci., 2008, vol. 99, no. 6, pp. 1100–1108.

    Article  PubMed  CAS  Google Scholar 

  209. Mineur, P., Colige, A.C., Deroanne, C.F., et al., Newly Identified Biologically Active and Proteolysis-Resistant VEGF-A Isoform VEGF111 Is Induced by Genotoxic Agents, J. Cell Biol., 2007, vol. 179, no. 6, pp. 1261–1273.

    Article  PubMed  CAS  Google Scholar 

  210. Chao, C., Goluszko, E., Lee, Y.T., et al., Constitutively Active CCK2 Receptor Splice Variant Increases Src-Dependent HIF-1 alpha Expression and Tumor Growth, Oncogene, 2007, vol. 26, no. 7, pp. 1013–1019.

    Article  PubMed  CAS  Google Scholar 

  211. Depontieu, F., Grigoriu, B.D., Scherpereel, A., et al., Loss of Endocan Tumorigenic Properties after Alternative Splicing of Exon 2, BMC Cancer, 2008, vol. 8, no. 14.

  212. Liu, Y.H., Lin, C.Y., Lin, W.C., et al., Up-Regulation of Vascular Endothelial Growth Factor-D Expression in Clear Cell Renal Cell Carcinoma by CD74: A Critical Role in Cancer Cell Tumorigenesis, J. Immunol, 2008, vol. 181, no. 9, pp. 6584–6594.

    PubMed  CAS  Google Scholar 

  213. Ha, S.A., Kim, H.K., Yoo, J., et al., Transdifferentiationinducing HCCR-1 Oncogene, BMC Cell. Biol., 2010, vol. 11, no. 49.

  214. Jin, G., Kawsar, H.I., Hirsch, S.A., et al., an Antimicrobial Peptide Regulates Tumor-Associated Macrophage Trafficking via the Chemokine Receptor CCR2, a Model for Tumorigenesis, PLoS One, 2010, vol. 5, no. 6.

  215. Liu, S.H., Patel, S., Gingras, M.C., et al., PDX-1: Demonstration of Oncogenic Properties in Pancreatic Cancer, Cancer, 2011, vol. 117, no. 4, pp. 723–733.

    Article  PubMed  CAS  Google Scholar 

  216. Zhou, W.J., Geng, Z.H., Chi, S., et al., Slit-Robo Signaling Induces Malignant Transformation Through Hakai-Mediated E-Cadherin Degradation during Colorectal Epithelial Cell Carcinogenesis, Cell Res., 2011, vol. 21, no. 4, pp. 609–626.

    Article  PubMed  CAS  Google Scholar 

  217. Zhao, J.J., Gjoerup, O.V., Subramanian, R.R., et al., Human Mammary Epithelial Cell Transformation Through the Activation of Phosphatidylinositol 3-Kinase, Cancer Cell, 2003, vol. 3, no. 5, pp. 483–495.

    Article  PubMed  CAS  Google Scholar 

  218. Zelinski, D.P., Zantek, N.D., Stewart, J.C., et al., EphA2 Overexpression Causes Tumorigenesis of Mammary Epithelial Cells, Cancer Res., 2001, vol. 61, no. 5, pp. 2301–2306.

    PubMed  CAS  Google Scholar 

  219. Prescott, J.D., Koto, K.S., Singh, M., and Gutierrez-Hartmann, A., The ETS Transcription Factor ESE-1 Transforms MCF-12A Human Mammary Epithelial Cells via a Novel Cytoplasmic Mechanism, Mol. Cell. Biol., 2004, vol. 24, no. 12, pp. 5548–5564.

    Article  PubMed  CAS  Google Scholar 

  220. Moyano, J.V., Evans, J.R., Chen, F., et al., AlphaB-Crystallin Is a Novel Oncoprotein That Predicts Poor Clinical Outcome in Breast Cancer, J. Clin. Invest., 2006, vol. 116, no. 1, pp. 261–270.

    Article  PubMed  CAS  Google Scholar 

  221. Kim, H.J., Litzenburger, B.C., Cui, X., et al., Constitutively Active Type I Insulin-Like Growth Factor Receptor Causes Transformation and Xenograft Growth of Immortalized Mammary Epithelial Cells and Is Accompanied by an Epithelial-to-Mesenchymal Transition Mediated by NF-KappaB and Snail, Mol. Cell. Biol., 2007, vol. 27, no. 8, pp. 3165–3175.

    Article  PubMed  CAS  Google Scholar 

  222. Zhu, T., Starling-Emerald, B., Zhang, X., et al., Oncogenic Transformation of Human Mammary Epithelial Cells by Autocrine Human Growth Hormone, Cancer Res., 2005, vol. 65, no. 1, pp. 317–24.

    PubMed  CAS  Google Scholar 

  223. Mohankumar, K.M., Perry, J.K., Kannan, N., et al., Transcriptional Activation of Signal Transducer and Activator of Transcription (STAT) 3 and STAT5B Partially Mediate Homeobox A1-Stimulated Oncogenic Transformation of the Immortalized Human Mammary Epithelial Cell, Endocrinology, 2008, vol. 149, no. 5, pp. 2219–2229.

    Article  PubMed  CAS  Google Scholar 

  224. Al Moustafa, A.E., Foulkes, W.D., Benlimame, N., et al., E6/E7 Proteins of HPV Type 16 and ErbB-2 Cooperate to Induce Neoplastic Transformation of Primary Normal Oral Epithelial Cells, Oncogene, 2004, vol. 23, no. 2, pp. 350–358.

    Article  PubMed  CAS  Google Scholar 

  225. Kusakari, T., Kariya, M., Mandai, M., et al., C-ErbB-2 or Mutant Ha-Ras Induced Malignant Transformation of Immortalized Human Ovarian Surface Epithelial Cells in vitro, Brit. J. Cancer, 2003, vol. 89, no. 12, pp. 2293–2298.

    Article  PubMed  CAS  Google Scholar 

  226. Ropiquet, F., Huguenin, S., Villette, J.M., et al., FGF7/KGF Triggers Cell Transformation and Invasion on Immortalised Human Prostatic Epithelial PNT1A Cells, Int. J. Cancer, 1999, vol. 82, no. 2, pp. 237–243.

    Article  PubMed  CAS  Google Scholar 

  227. Govindarajan, B., Shah, A., Cohen, C., et al., Malignant Transformation of Human Cells by Constitutive Expression of Platelet-Derived Growth Factor-BB, J. Biol. Chem., 2005, no. 14, pp. 13936–13943.

  228. Gutkind, J.S., Novotny, E.A., Brann, M.R., and Robbins, K.C., Muscarinic Acetylcholine Receptor Subtypes as Agonist-Dependent Oncogenes, Proc. Nat. Acad. Sci. U.S.A., 1991, vol. 88, no. 11, pp. 4703–4707.

    Article  CAS  Google Scholar 

  229. Sun, M., Wang, G., Paciga, J.E., et al., AKT1/PKBalpha Kinase Is Frequently Elevated in Human Cancers and Its Constitutive Activation Is Required for Oncogenic Transformation in NIH3T3 Cells, Am. J. Pathol., 2001, vol. 159, no. 2, pp. 431–437.

    Article  PubMed  CAS  Google Scholar 

  230. Keren-Paz, A., Bercovich, Z., Porat, Z., et al., Overexpression of Antizyme-Inhibitor in NIH3T3 Fibroblasts Provides Growth Advantage Through Neutralization of Antizyme Functions, Oncogene, 2006, vol. 25, no. 37, pp. 5163–5172.

    PubMed  CAS  Google Scholar 

  231. Tao, W.J., Lin, H., Sun, T., et al., BCR-ABL Oncogenic Transformation of NIH 3T3 Fibroblasts Requires the IL-3 Receptor BCR-ABL Transformation of 3T3 Cells Requires IL-3R, Oncogene, 2008, vol. 27, no. 22, pp. 3194–3200.

    Article  PubMed  CAS  Google Scholar 

  232. Xiang-yong, L., Yang-chao, C., Ke-yuan, Z., et al., Overexpression of Bax Inhibitor-1 (BI-1) Induces Cell Transformation in NIH3T3 Cells, Cell. Biol. Int., 2010, vol. 34, no. 11, pp. 1099–1104.

    Article  PubMed  Google Scholar 

  233. Lin, R., Bagrodia, S., Cerione, R., and Manor, D., A Novel Cdc42Hs Mutant Induces Cellular Transformation, Curr. Biol., 1997, vol. 7, no. 10, pp. 794–797.

    Article  PubMed  CAS  Google Scholar 

  234. Moiola, C., De Luca, P., Gardner, K., et al., Cyclin T1 Overexpression Induces Malignant Transformation and Tumor Growth, Cell Cycle, 2010, vol. 9, no. 15, pp. 3119–3126.

    Article  PubMed  CAS  Google Scholar 

  235. Anand, N., Murthy, S., Amann, G., et al., Protein Elongation Factor EEF1A2 Is a Putative Oncogene in Ovarian Cancer, Nat. Genet., 2002, vol. 31, no. 3, pp. 301–305.

    PubMed  CAS  Google Scholar 

  236. Greulich, H., Chen, T.H., Feng, W., et al., Oncogenic Transformation by Inhibitor-Sensitive and Resistant EGFR Mutants, PLoS Med., 2005, vol. 2, no. 11, p. e313.

  237. Moscatelli, D. and Quarto, N., Transformation of NIH 3T3 Cells with Basic Fibroblast Growth Factor or the Hst/K-Fgf Oncogene Causes Downregulation of the Fibroblast Growth Factor Receptor: Reversal of Morphological Transformation and Restoration of Receptor Number by Suramin, J. Cell Biol., 1989, vol. 109, no. 5, pp. 2519–2527.

    Article  PubMed  CAS  Google Scholar 

  238. Fuller-Pace, F., Peters, G., and Dickson, C., Cell Transformation by KFGF Requires Secretion but Not Glycosylation, J. Cell Biol., 1991, vol. 115, no. 2, pp. 547–555.

    Article  PubMed  CAS  Google Scholar 

  239. Lawshe, A. Shankar, D.B., et al., FGF-8 Isoforms Differ in NIH3T3 Cell Transforming Potential, Cell Growth Differ., 1995, vol. 6, no. 7, pp. 817–825.

    PubMed  Google Scholar 

  240. Hu, Y., Ying, H., and Xu, Y., HF-LANa, a Human Homologue of Derlin Family, Regulating the Expression of Cancer-Related Genes Promotes NIH3T3 Cell Transformation, Cancer Lett., 2007, vol. 258, no. 2, pp. 171–180.

    Article  PubMed  CAS  Google Scholar 

  241. De vivo, M., Chen, J., Codina, J., and Iyengar, R., Enhanced Phospholipase C Stimulation and Transformation in NIH-3T3 Cells Expressing Q209LGqalpha-Subunits, J. Biol. Chem., 1992, vol. 267, no. 26, pp. 18263–18266.

    PubMed  Google Scholar 

  242. Kroll, S.D., Chen, J., De vivo, M., et al., The Q205LGo-Alpha Subunit Expressed in NIH-3T3 Cells Induces Transformation, J. Biol. Chem., 1992, no. 32, pp. 23183–23188.

  243. Ram, P.T., Horvath, C.M., and Iyengar, R., Stat3-Mediated Transformation of NIH-3T3 Cells by the Constitutively Active Q205L Galphao Protein, Science, 2000, vol. 287, no. 5450, pp. 142–144.

    Article  PubMed  CAS  Google Scholar 

  244. Kuo, W., Lin, J., and Tang, T.K., Human Glucose-6-Phosphate Dehydrogenase (G6PD) Gene Transforms NIH 3T3 Cells and Induces Tumors in Nude Mice, Int. J. Cancer, 2000, vol. 85, no. 6, pp. 857–864.

    Article  PubMed  CAS  Google Scholar 

  245. Ha, S.A., Shin, S.M., Lee, Y.J., et al., HCCRBP-1 Directly Interacting with HCCR-1 Induces Tumorigenesis Through P53 Stabilization, Int. J. Cancer, 2008, vol. 122, no. 3, pp. 501–508.

    Article  PubMed  CAS  Google Scholar 

  246. Gao, G., Peng, M., Zhu, L., et al., Human Papillomavirus 16 Variant E7 Gene Induces Transformation of NIH 3T3 Cells via Up-Regulation of Cdc25A and Cyclin A, Int. J. Gynecol. Cancer, 2009, vol. 19, no. 4, pp. 494–499.

    Article  PubMed  Google Scholar 

  247. Ryoo, Z.Y., Jung, B.K., Lee, S.R., et al., Neoplastic Transformation and Tumorigenesis Associated with Overexpression of IMUP-1 and IMUP-2 Genes in Cultured NIH/3T3 Mouse Fibroblasts, Biochem. Biophys. Res. Commun., 2006, vol. 349, no. 3, pp. 995–1002.

    Article  PubMed  CAS  Google Scholar 

  248. Caruana, G., Cambareri, A.C., Gonda, T.J., and Ashman, L.K., Transformation of NIH3T3 Fibroblasts by the C-Kit Receptor Tyrosine Kinase: Effect of Receptor Density and Ligand-Requirement, Oncogene, 1998, vol. 16, no. 2, pp. 179–190.

    Article  PubMed  CAS  Google Scholar 

  249. Viswanathan, S.R., Powers, J.T., Einhorn, W., et al., Lin28 Promotes Transformation and Is Associated with Advanced Human Malignancies, Nat. Genet., 2009, vol. 41, no. 7, pp. 843–848.

    Article  PubMed  CAS  Google Scholar 

  250. Fridman, R., Sweeney, T.M., Zain, M., et al., Malignant Transformation of NIH-3T3 Cells after Subcutaneous Co-Injection with a Reconstituted Basement Membrane (Matrigel), Int. J. Cancer, 1992, vol. 51, no. 5, pp. 740–754.

    Article  PubMed  CAS  Google Scholar 

  251. Kadomatsu, K., Hagihara, M., Akhter, S., et al., Midkine Induces the Transformation of NIH3T3 Cells, Brit. J. Cancer, 1997, vol. 75, no. 3, pp. 354–359.

    Article  PubMed  CAS  Google Scholar 

  252. Komiya, K., Sueoka-Aragane, N., Sato, A., et al., Mina53, a Novel c-myc Target Gene, Is Frequently Expressed in Lung Cancers and Exerts Oncogenic Property in NIH/3T3 Cells, J. Cancer Res. Clin. Oncol., 2010, vol. 136, no. 3, pp. 465–473.

    Article  PubMed  CAS  Google Scholar 

  253. Bafna, S., Singh, A.P., Moniaux, N., et al., MUC4, a Multifunctional Transmembrane Glycoprotein, Induces Oncogenic Transformation of NIH3T3 Mouse Fibroblast Cells, Cancer Res., 2008, vol. 68, no. 22, pp. 9231–9238.

    Article  PubMed  CAS  Google Scholar 

  254. Piestun, D., Kochupurakkal, B.S., Jacob-Hirsch, J., et al., Nanog Transforms NIH3T3 Cells and Targets Cell-Type Restricted Genes, Biochem. Biophys. Res. Commun., 2006, vol. 343, no. 1, pp. 279–285.

    Article  PubMed  CAS  Google Scholar 

  255. Moshier, J.A., Dosescu, J., Skunca, M., and Luk, G.D., Transformation of NIH/3T3 Cells by Ornithine Decarboxylase Overexpression, Cancer Res., 1993, vol. 53, no. 11, pp. 2618–2622.

    PubMed  CAS  Google Scholar 

  256. Moshier, J.A., Malecka-Panas, E., Geng, H., et al., Ornithine Decarboxylase Transformation of NIH/3T3 Cells Is Mediated by Altered Epidermal Growth Factor Receptor Activity, Cancer Res., 1995, vol. 55, no. 22, pp. 5358–5365.

    PubMed  CAS  Google Scholar 

  257. Platica, M., Ivan, E., Ionescu, A., et al., Transformation of NIH 3T3 Cells by Enhanced PAR Expression, Biochem. Biophys. Res. Commun., 2004, vol. 314, no. 3, pp. 891–896.

    Article  PubMed  CAS  Google Scholar 

  258. Clarke, M.F. and Westin, E.H., Malignant Transformation of NIH 3T3 Fibroblasts by Human C-Sis Is Dependent Upon the Level of Oncogene Expression, Mol. Carcinog., 1992, vol. 5, no. 4, pp. 311–319.

    Article  PubMed  Google Scholar 

  259. Kim, H.R., Upadhyay, S., Korsmeyer, S., and Deuel, T.F., Platelet-Derived Growth Factor (PDGF) B and A Homodimers Transform Murine Fibroblasts Depending on the Genetic Background of the Cell, J. Biol. Chem., 1994, no. 48, pp. 30604–30608.

  260. Chauhan, A.K., Li, Y.S., and Deuel, T.F., Pleiotrophin Transforms NIH 3T3 Cells and Induces Tumors in Nude Mice, Proc. Nat. Acad. Sci. U.S.A., 1993, vol. 90, no. 2, pp. 679–682.

    Article  CAS  Google Scholar 

  261. Tabib, A. and Bachrach, U., Role of Polyamines in Mediating Malignant Transformation and Oncogene Expression, Int. J. Biochem. Cell Biol., 1999, vol. 31, no. 11, pp. 1289–1295.

    Article  PubMed  CAS  Google Scholar 

  262. Cranston, A., Carniti, C., Martin, S., et al., A Novel Activating Mutation in the RET Tyrosine Kinase Domain Mediates Neoplastic Transformation, Mol. Endocrinol., 2006, no. 7, pp. 1633–1643.

  263. Shalloway, D., Johnson, P.J., Freed, E.O., et al., Transformation of NIH 3T3 Cells by Cotransfection with C-Src and Nuclear Oncogenes, Mol. Cell Biol., 1987, vol. 7, no. 10, pp. 3582–3590.

    PubMed  CAS  Google Scholar 

  264. Shalloway, D., Coussens, P.M., and Yaciuk, P., Overexpression of the C-Src Protein Does Not Induce Transformation of NIH 3T3 Cells, Proc. Nat. Acad. Sci. U.S.A., 1984, vol. 81, no. 22, p. 7071.

    Article  CAS  Google Scholar 

  265. Bromberg, J.F., Wrzeszczynska, M.H., Devgan, G., et al., Stat3 as an Oncogene, Cell, 1999, vol. 98, no. 3, pp. 295–303.

    Article  PubMed  CAS  Google Scholar 

  266. Radhakrishnan, V.M. and Martinez, J.D., 14-3-3gamma Induces Oncogenic Transformation by Stimulating MAP Kinase and PI3K Signaling, PLoS One, 2010, vol. 5, no. 7, p. e11433.

    Article  PubMed  CAS  Google Scholar 

  267. Wang, C., Lisanti, M.P., and Liao, D.J., Reviewing Once More the c-myc and ras Collaboration: Converging at the Cyclin D1-CDK4 Complex and Challenging Basic Concepts of Cancer Biology, Cell Cycle, 2011, vol. 10, no. 1, pp. 57–67.

    Article  PubMed  CAS  Google Scholar 

  268. Meloche, S. and Pouyssegur, J., The ERK1/2 Mitogen-Activated Protein Kinase Pathway as a Master Regulator of the G1- to S-Phase Transition, Oncogene, 2007, vol. 26, no. 22, pp. 3227–3239.

    Article  PubMed  CAS  Google Scholar 

  269. McCubrey, J.A., Steelman, L.S., Chappell, W.H., et al., Roles of the Raf/MEK/ERK Pathway in Cell Growth, Malignant Transformation and Drug Resistance, Biochim. Biophys. Acta, 2007, vol. 1773, no. 8, pp. 1263–1284.

    Article  PubMed  CAS  Google Scholar 

  270. Chambard, J.C., Lefloch, R., Pouyssegur, J., and Lenormand, P., ERK Implication in Cell Cycle Regulation, Biochim. Biophys. Acta, 2007, vol. 1773, no. 8, pp. 1299–1310.

    Article  PubMed  CAS  Google Scholar 

  271. Jiang, B.H. and Liu, L.Z., PI3K/PTEN Signaling in Angiogenesis and Tumorigenesis, Adv. Cancer Res., 2009, vol. 102, pp. 19–65.

    Article  PubMed  CAS  Google Scholar 

  272. Donnell, K.A. Zeller, K.I., et al., The c-myc Target Gene Network, Semin. Cancer Biol., 2006, vol. 16, no. 4, pp. 253–264.

    Article  CAS  Google Scholar 

  273. Rodriguez, J., Calvo, F., Gonzalez, J.M., et al., ERK1/2 MAP Kinases Promote Cell Cycle Entry by Rapid, Kinase-Independent Disruption of Retinoblastomalamin A Complexes, J. Cell Biol., 2010, vol. 191, no. 5, pp. 967–979.

    Article  PubMed  CAS  Google Scholar 

  274. Manning, B.D. and Cantley, L.C., AKT/PKB Signaling: Navigating Downstream, Cell, 2007, vol. 129, no. 7, pp. 1261–1274.

    Article  PubMed  CAS  Google Scholar 

  275. Rosner, M., Fuchs, C., Siegel, N., et al., Functional Interaction of Mammalian Target of Rapamycin Complexes in Regulating Mammalian Cell Size and Cell Cycle, Hum. Mol. Genet., 2009, vol. 18, no. 17, pp. 3298–3310.

    Article  PubMed  CAS  Google Scholar 

  276. Menon, S. and Manning, B.D., Common Corruption of the MTOR Signaling Network in Human Tumors, Oncogene, 2008, Suppl. 2, pp. S43–S51.

  277. Zoncu, R., Efeyan, A., and Sabatini, D.M., MTOR: From Growth Signal Integration to Cancer, Diabetes and Ageing, Nat. Rev. Mol. Cell Biol., 2011, vol. 12, no. 1, pp. 21–35.

    Article  PubMed  CAS  Google Scholar 

  278. Winter, J.N., Jefferson, L.S., and Kimball, S.R., The ERK and Akt Signaling Pathways Function Through Parallel Mechanisms to Promote MTORC1, Amer. J. Physiol. Cell Physiol., 2011, no. 5, pp. 1172–1180.

  279. Fingar, D.C., Richardson, C.J., Tee, A.R., et al., MTOR Controls Cell Cycle Progression Through Its Cell Growth Effectors S6K1 and 4E-BP1/Eukaryotic Translation Initiation Factor 4E, Mol. Cell. Biol., 2004, vol. 24, no. 1, pp. 200–216.

    Article  PubMed  CAS  Google Scholar 

  280. Dowling, R.J., Topisirovic, I., Alain, T., et al., MTORC1-Mediated Cell Proliferation, But Not Cell Growth, Controlled by the 4E-BPs, Science, 2010, vol. 328, no. 5982, pp. 1172–1176.

    Article  PubMed  CAS  Google Scholar 

  281. Tarn, W.Y. and Lai, M.C., Translational Control of Cyclins, Cell Div., 2011, vol. 6, no. 1.

  282. Oyama, K., Okawa, T., Nakagawa, H., et al., AKT Induces Senescence in Primary Esophageal Epithelial Cells But Is Permissive for Differentiation as Revealed in Organotypic Culture, Oncogene, 2007, vol. 26, no. 16, pp. 2353–2364.

    Article  PubMed  CAS  Google Scholar 

  283. Nogueira, V., Park, Y., Chen, C.C., et al., Akt Determines Replicative Senescence and Oxidative or Oncogenic Premature Senescence and Sensitizes Cells to Oxidative Apoptosis, Cancer Cell, 2008, vol. 14, no. 6, pp. 458–470.

    Article  PubMed  CAS  Google Scholar 

  284. Miyauchi, H., Minamino, T., Tateno, K., et al., Akt Negatively Regulates the in vitro Lifespan of Human Endothelial Cells via a P53/P21-Dependent Pathway, EMBO J., 2004, vol. 23, no. 1, pp. 212–220.

    Article  PubMed  CAS  Google Scholar 

  285. Minamino, T., Miyauchi, H., Tateno, K., et al., Akt-Induced Cellular Senescence: Implication for Human Disease, Cell Cycle, 2004, vol. 3, no. 4, pp. 449–451.

    Article  PubMed  CAS  Google Scholar 

  286. Besson, A. and Yong, V.W., Involvement of P21(Waf1/Cip1) in Protein Kinase C alpha-Induced Cell Cycle Progression, Mol. Cell Biol., 2000, vol. 20, no. 13, pp. 4580–4590.

    Article  PubMed  CAS  Google Scholar 

  287. Coleman, M.L., Marshall, C.J., and Olson, M.F., Ras Promotes P21(Waf1/Cip1) Protein Stability via a Cyclin D1-Imposed Block in Proteasome-Mediated Degradation, EMBO J., 2003, vol. 22, no. 9, pp. 2036–2046.

    Article  PubMed  CAS  Google Scholar 

  288. Ciccarelli, C., Marampon, F., Scoglio, A., et al., P21WAF1 Expression Induced by MEK/ERK Pathway Activation or Inhibition Correlates with Growth Arrest, Myogenic Differentiation and Onco-Phenotype Reversal in Rhabdomyosarcoma Cells, Mol. Cancer, 2005, vol. 4, no. 41.

  289. Yang, X., Wang, W., Fan, J., et al., Prostaglandin A2-Mediated Stabilization of P21 MRNA Through an ERK-Dependent Pathway Requiring the RNA-Binding Protein HuR, J. Biol. Chem., 2004, vol. 279, no. 47, pp. 49298–49306.

    Article  PubMed  CAS  Google Scholar 

  290. Hu, T.H., Tai, M.H., Chuah, S.K., et al., Elevated P21 Expression Is Associated with Poor Prognosis of Rectal Stromal Tumors after Resection, J. Surg. Oncol., 2008, vol. 98, no. 2, pp. 117–123.

    Article  PubMed  Google Scholar 

  291. Takeshima, Y., Yamasaki, M., Nishisaka, T., et al., P21WAF1/CIP1 Expression in Primary Lung Adenocarcinomas: Heterogeneous Expression in Tumor Tissues and Correlation with P53 Expression and Proliferative Activities, Carcinogenesis, 1998, vol. 19, no. 10, pp. 1755–1761.

    Article  PubMed  CAS  Google Scholar 

  292. Korkolopoulou, P., Konstantinidou, A.E., Thomas-Tsagli, E., et al., WAF1/P21 Protein Expression Is an Independent Prognostic Indicator in Superficial and Invasive Bladder Cancer, Appl. Immun. Mol. Morphol., 2000, vol. 8, no. 4, pp. 285–292.

    Article  CAS  Google Scholar 

  293. Abdulamir, A.S., Hafidh, R.R., Mahdi, L.K., et al., The Interplay between P53 and P21 Tumor Suppressor Proteins in the Transformation of Colorectal Adenoma to Carcinoma, Amer. J. Immunol., 2008, vol. 4, no. 2, pp. 14–22.

    Article  Google Scholar 

  294. Kamiya, M. and Nakazato, Y., The Expression of P73, P21 and MDM2 Proteins in Gliomas, J. Neurooncol., 2002, no. 2, pp. 143–149.

  295. Zhang, M.F., Zhang, Z.Y., Fu, J., et al., Correlation between Expression of P53, P21/WAF1, and MDM2 Proteins and Their Prognostic Significance in Primary Hepatocellular Carcinoma, J. Transl. Med., 2009, vol. 7, no. 110.

  296. Mouriaux, F., Maurage, C.A., Labalette, P., et al., Cyclin-Dependent Kinase Inhibitory Protein Expression in Human Choroidal Melanoma Tumors, Invest. Ophthalmol. Vis. Sci., 2000, vol. 41, no. 10, pp. 2837–2843.

    PubMed  CAS  Google Scholar 

  297. Peeper, D.S., Ras and PRb: The Relationship Gets Yet More Intimate, Cancer Cell, 2009, vol. 15, no. 4, pp. 243–245.

    Article  PubMed  CAS  Google Scholar 

  298. Slingerland, J. and Pagano, M., Regulation of the Cdk Inhibitor P27 and Its Deregulation in Cancer, J. Cell Physiol., 2000, vol. 183, no. 1, pp. 10–17.

    Article  PubMed  CAS  Google Scholar 

  299. Nicholson, J.M. and Duesberg, P., On the Karyotypic Origin and Evolution of Cancer Cells, Cancer Genet. Cytogenet., 2009, vol. 194, no. 2, pp. 96–110.

    Article  PubMed  CAS  Google Scholar 

  300. Klein, A., Li, N., Nicholson, J.M., McCormack, A.A., et al., Transgenic Oncogenes Induce Oncogene-Independent Cancers with Individual Karyotypes and Phenotypes, Cancer Genet. Cytogenet., 2010, vol. 200, no. 2, pp. 79–99.

    Article  PubMed  CAS  Google Scholar 

  301. Li, L., McCormack, A.A., Nicholson, J.M., et al., Cancer-Causing Karyotypes: Chromosomal Equilibria between Destabilizing Aneuploidy and Stabilizing Selection for Oncogenic Function, Cancer Genet. Cytogenet., 2009, vol. 188, no. 1, pp. 1–25.

    Article  PubMed  CAS  Google Scholar 

  302. Duesberg, P., Mandrioli, D., McCormack, A., and Nicholson, J.M., Is Carcinogenesis a Form of Speciation?, Cell Cycle, 2011, vol. 10, no. 13.

  303. Halazonetis, T.D., Gorgoulis, V.G., and Bartek, J., an Oncogene-Induced DNA Damage Model for Cancer Development, Science, 2008, vol. 319, no. 5868, pp. 1352–1355.

    Article  PubMed  CAS  Google Scholar 

  304. Bylund, L., Kytola, S., Lui, W.O., et al., Analysis of the Cytogenetic Stability of the Human Embryonal Kidney Cell Line 293 by Cytogenetic and STR Profiling Approaches, Cytogenet. Genome Res., 2004, vol. 106, no. 1, pp. 28–32.

    Article  PubMed  CAS  Google Scholar 

  305. Louis, N., Evelegh, C., and Graham, F.L., Cloning and Sequencing of the Cellular-Viral Junctions from the Human Adenovirus Type 5 Transformed 293 Cell Line, Virology, 1997, vol. 233, no. 2, pp. 423–429.

    Article  PubMed  CAS  Google Scholar 

  306. Zur Hausen, H., Induction of Specific Chromosomal Aberrations by Adenovirus Type 12 in Human Embryonic Kidney Cells, J. Virol., 1967, vol. 1, no. 6, pp. 1174–1185.

    PubMed  Google Scholar 

  307. McDougall, J.K., Adenovirus-Induced Chromosome Aberrations in Human Cells, J. Gen. Virol., 1971, vol. 12, no. 1, pp. 43–51.

    Article  PubMed  CAS  Google Scholar 

  308. Kim, J.H., Choi, E.Y., Jung, E.-S., et al., Characterization of Clones of Human Cell Line Infected with Porcine Endogenous Retrovirus (PERV) from Porcine Cell Line, PK-15, Infect. Chemother., 2009, vol. 41, no. 1, pp. 1–8.

    Article  Google Scholar 

  309. Shen, C., Gu, M., Song, C., et al., The Tumorigenicity Diversification in Human Embryonic Kidney 293 Cell Line Cultured in vitro, Biologicals, 2008, vol. 36, no. 4, pp. 263–268.

    Article  PubMed  CAS  Google Scholar 

  310. Rubin, A.L., Arnstein, P., and Rubin, H., Physiological Induction and Reversal of Focus Formation and Tumorigenicity in NIH 3T3 Cells, Proc. Nat. Acad. Sci. U.S.A., 1990, vol. 87, no. 24, pp. 10005–10009.

    Article  CAS  Google Scholar 

  311. Rubin, A.L. and Ellison, B.J., Induction of Transformation in NIH3T3 Cells by Moderate Growth Constraint: Evidence That Neoplasia Is Driven by Adaptational Change, Carcinogenesis, 1991, no. 10, pp. 1801–1806.

  312. Rubin, H., Cellular Epigenetics: Effects of Passage History on Competence of Cells for “Spontaneous” Transformation, Proc. Nat. Acad. Sci. U.S.A., 1993, vol. 90, no. 22, pp. 10715–10719.

    Article  CAS  Google Scholar 

  313. Rubin, H., The Role of Selection in Progressive Neoplastic Transformation, Adv. Cancer Res., 2001, vol. 83, pp. 159–207.

    Article  PubMed  CAS  Google Scholar 

  314. Rubin, H., Multistage Carcinogenesis in Cell Culture, Dev. Biol. (Basel), 2001, vol. 106, pp. 61–66.

    CAS  Google Scholar 

  315. Rubin, H., Cell-Cell Contact Interactions Conditionally Determine Suppression and Selection of the Neoplastic Phenotype, Proc. Nat. Acad. Sci. U.S.A., 2008, vol. 105, no. 17, pp. 6215–6221.

    Article  CAS  Google Scholar 

  316. Millau, J.F., Mai, S., Bastien, N., and Drouin, R., P53 Functions and Cell Lines: Have We Learned the Lessons from the Past?, BioEssays, 2010, vol. 32, no. 5, pp. 392–400.

    Article  PubMed  CAS  Google Scholar 

  317. Nielsen, K.V. and Briand, P., Cytogenetic Analysis of in vitro Karyotype Evolution in a Cell Line Established from Nonmalignant Human Mammary Epithelium, Cancer Genet. Cytogenet., 1989, vol. 39, no. 1, pp. 103–118.

    Article  PubMed  CAS  Google Scholar 

  318. Bartholdi, M.F., Ray, F.A., Cram, L.S., and Kraemer, P.M., Karyotype Instability of Chinese Hamster Cells during in vivo Tumor Progression, Somat. Cell. Mol. Genet., 1987, vol. 13, no. 1, pp. 1–10.

    Article  PubMed  CAS  Google Scholar 

  319. Duesberg, P. and Rasnick, D., Aneuploidy, the Somatic Mutation That Makes Cancer a Species of Its Own, Cell Motil. Cytoskeleton, 2000, vol. 47, no. 2, pp. 81–107.

    Article  PubMed  CAS  Google Scholar 

  320. Thorgeirsson, U.P., Turpeenniemi-Hujanen, T., Williams, J.E., et al., NIH/3T3 Cells Transfected with Human Tumor DNA Containing Activated Ras Oncogenes Express the Metastatic Phenotype in Nude Mice, Mol. Cell. Biol., 1985, vol. 5, no. 1, pp. 259–262.

    PubMed  CAS  Google Scholar 

  321. Kuzumaki, N., Ogiso, Y., Oda, A., et al., Resistance to Oncogenic Transformation in Revertant R1 of Human Ras-Transformed NIH 3T3 Cells, Mol. Cell. Biol., 1989, vol. 9, no. 5, pp. 2258–2263.

    PubMed  CAS  Google Scholar 

  322. Li, Y., Weibing, S., Liu, H., et al., Mitochondrial DNA from Colorectal Cancer Cells Promotes the Malignant Phenotype of NIH3T3 Cells, Cell Biol. Int., 2008, vol. 32, no. 8, pp. 979–983.

    Article  PubMed  CAS  Google Scholar 

  323. Zhang, K., Sun, J., Liu, N., et al., Transformation of NIH 3T3 Cells by HER3 or HER4 Receptors Requires the Presence of HER1 or HER2, J. Biol. Chem., 1996, vol. 271, no. 7, pp. 3884–3890.

    Article  PubMed  CAS  Google Scholar 

  324. Kadota, M., Yang, H.H., Gomez, B., et al., Delineating Genetic Alterations for Tumor Progression in the MCF10A Series of Breast Cancer Cell Lines, PLoS One, 2010, vol. 5, no. 2, p. e9201.

    Article  PubMed  CAS  Google Scholar 

  325. Zhang, D.L., Ji, L., Li, L.J., and Huang, G.S., Systematically Experimental Investigation on Carcinogenesis or Tumorigenicity of VERO Cell Lines of Different Karyotypes in Nude Mice in vivo Used for Viral Vaccine Manufacture, Acta Genet. Sin., 2004, vol. 31, no. 7, pp. 647–660.

    PubMed  CAS  Google Scholar 

  326. Ragel, B.T., Couldwell, W.T., Gillespie, D.L., et al., A Comparison of the Cell Lines Used in Meningioma Research, Surg. Neurol., 2008, vol. 70, no. 3, pp. 295–307.

    Article  PubMed  Google Scholar 

  327. Thompson, S.L. and Compton, D.A., Examining the Link between Chromosomal Instability and Aneuploidy in Human Cells, J. Cell Biol., 2008, vol. 180, no. 4, pp. 665–672.

    Article  PubMed  CAS  Google Scholar 

  328. Roschke, A.V., Tonon, G., Gehlhaus, K.S., et al., Karyotypic Complexity of the NCI-60 Drug-Screening Panel, Cancer Res., 2003, vol. 63, no. 24, pp. 8634–8647.

    PubMed  CAS  Google Scholar 

  329. Bussey, K.J., Chin, K., Lababidi, S., et al., Integrating Data on DNA Copy Number with Gene Expression Levels and Drug Sensitivities in the NCI-60 Cell Line Panel, Mol. Cancer Ther., 2006, vol. 5, no. 4, pp. 853–867.

    Article  PubMed  CAS  Google Scholar 

  330. Lundberg, E., Fagerberg, L., Klevebring, D., et al., Defining the Transcriptome and Proteome in Three Functionally Different Human Cell Lines, Mol. Syst. Biol., 2010, vol. 6, no. 450.

  331. Valsesia, A., Rimoldi, D., Martinet, D., et al., Network-Guided Analysis of Genes with Altered Somatic Copy Number and Gene Expression Reveals Pathways Commonly Perturbed in Metastatic Melanoma, PLoS One, 2011, vol. 6, no. 4, p. e18369.

    Article  PubMed  CAS  Google Scholar 

  332. Geiger, T., Cox, J., and Mann, M., Proteomic Changes Resulting from Gene Copy Number Variations in Cancer Cells, PLoS Genet, 2010, vol. 6, no. 9, p. e1001090.

    Article  PubMed  CAS  Google Scholar 

  333. Pavelka, N., Rancati, G., Zhu, J., et al., Aneuploidy Confers Quantitative Proteome Changes and Phenotypic Variation in Budding Yeast, Nature, 2010, vol. 468, no. 7321, pp. 321–325.

    Article  PubMed  CAS  Google Scholar 

  334. Bajaj, R., Xu, F., Xiang, B., et al., Evidence-Based Genomic Diagnosis Characterized Chromosomal and Cryptic Imbalances in 30 Elderly Patients with Myelodysplastic Syndrome and Acute Myeloid Leukemia, Mol. Cytogenet., 2011, no. 3, p. 4.

  335. Hurst, C.D., Fiegler, H., Carr, P., et al., High-Resolution Analysis of Genomic Copy Number Alterations in Bladder Cancer by Microarray-Based Comparative Genomic Hybridization, Oncogene, 2004, vol. 23, no. 12, pp. 2250–2263.

    Article  PubMed  CAS  Google Scholar 

  336. Qin, S.L., Chen, X.J., Xu, X., et al., Detection of Chromosomal Alterations in Bladder Transitional Cell Carcinomas from Northern China by Comparative Genomic Hybridization, Cancer Lett., 2006, vol. 238, no. 2, pp. 230–239.

    Article  PubMed  CAS  Google Scholar 

  337. Prat, E., del Rey, J., Ponsa, I., et al., Comparative Genomic Hybridization Analysis Reveals New Different Subgroups in Early-Stage Bladder Tumors, Urology, 2010, vol. 75, no. 2, pp. 347–355.

    Article  PubMed  Google Scholar 

  338. Nikolsky, Y., Sviridov, E., Yao, J., et al., Genomewide Functional Synergy between Amplified and Mutated Genes in Human Breast Cancer, Cancer Res., 2008, no. 22, pp. 9532–9540.

  339. Stephens, P.J., McBride, D.J., Lin, M.L., et al., Complex Landscapes of Somatic Rearrangement in Human Breast Cancer Genomes, Nature, 2009, vol. 462, no. 7276, pp. 1005–1010.

    Article  PubMed  CAS  Google Scholar 

  340. Russnes, H.G., Vollan, H.K., Lingjaerde, O.C., et al., Genomic Architecture Characterizes Tumor Progression Paths and Fate in Breast Cancer Patients, Sci. Transl. Med., 2010, no. 38, pp. 38–47.

  341. Smid, M., Hoes, M., Sieuwerts, A.M., et al., Patterns and Incidence of Chromosomal Instability and Their Prognostic Relevance in Breast Cancer Subtypes, Breast Cancer Res. Treat., 2011, vol. 128, no. 1, pp. 23–30.

    Article  PubMed  CAS  Google Scholar 

  342. Navin, N., Krasnitz, A., Rodgers, L., et al., Inferring Tumor Progression from Genomic Heterogeneity, Genome Res., 2010, vol. 20, no. 1, pp. 68–80.

    Article  PubMed  CAS  Google Scholar 

  343. Heselmeyer, K., Macville, M., Schrock, E., et al., Advanced-Stage Cervical Carcinomas Are Defined by a Recurrent Pattern of Chromosomal Aberrations Revealing High Genetic Instability and a Consistent Gain of Chromosome Arm 3q, Genes Chromosomes Cancer., 1997, vol. 19, no. 4, pp. 233–240.

    Article  PubMed  CAS  Google Scholar 

  344. Kloth, J.N., Oosting, J., van Wezel, T., et al., Combined Array-Comparative Genomic Hybridization and Single-Nucleotide Polymorphism-Loss of Heterozygosity Analysis Reveals Complex Genetic Alterations in Cervical Cancer, BMC Genom., 2007, vol. 8, no. 53.

  345. He, Q.J., Zeng, W.F., Sham, J.S., et al., Recurrent Genetic Alterations in 26 Colorectal Carcinomas and 21 Adenomas from Chinese Patients, Cancer Genet. Cytogenet., 2003, vol. 144, no. 2, pp. 112–118.

    Article  PubMed  CAS  Google Scholar 

  346. Gaasenbeek, M., Howarth, K., Rowan, A.J., et al., Combined Array-Comparative Genomic Hybridization and Single-Nucleotide Polymorphism-Loss of Heterozygosity Analysis Reveals Complex Changes and Multiple Forms of Chromosomal Instability in Colorectal Cancers, Cancer Res., 2006, vol. 66, no. 7, pp. 3471–3479.

    Article  PubMed  CAS  Google Scholar 

  347. Xiao, X.Y., Zhou, X.Y., Yan, G., et al., Chromosomal Alteration in Chinese Sporadic Colorectal Carcinomas Detected by Comparative Genomic Hybridization, Diagn. Mol. Pathol., 2007, vol. 16, no. 2, pp. 96–103.

    Article  PubMed  CAS  Google Scholar 

  348. Castorina, S., Barresi, V., Luca, T., et al., Recent Advances in Molecular Diagnostics of Colorectal Cancer by Genomic Arrays: Proposal for a Procedural Shift in Biological Sampling and Pathological Report, Ital. J. Anat. Embryol., 2010, vol. 115, nos. 1/2, pp. 39–45.

    PubMed  Google Scholar 

  349. Micci, F., Teixeira, M.R., Haugom, L., et al., Genomic Aberrations in Carcinomas of the Uterine Corpus, Genes Chromosomes Cancer., 2004, vol. 40, no. 3, pp. 229–246.

    Article  PubMed  CAS  Google Scholar 

  350. Shing, D.C., Morley-Jacob, C.A., Roberts, I., et al., Ewing’s Tumour: Novel Recurrent Chromosomal Abnormalities Demonstrated by Molecular Cytogenetic Analysis of Seven Cell Lines and One Primary Culture, Cytogenet. Genome Res., 2002, vol. 97, nos. 1/2, pp. 20–27.

    Article  PubMed  CAS  Google Scholar 

  351. Takada, H., Imoto, I., Tsuda, H., et al., Screening of DNA Copy-Number Aberrations in Gastric Cancer Cell Lines by Array-Based Comparative Genomic Hybridization, Cancer Sci., 2005, vol. 96, no. 2, pp. 100–110.

    Article  PubMed  CAS  Google Scholar 

  352. Veltman, I., Veltman, J., Janssen, I., et al., Identification of Recurrent Chromosomal Aberrations in Germ Cell Tumors of Neonates and Infants Using Genome-Wide Array-Based Comparative Genomic Hybridization, Genes Chromosomes Cancer., 2005, vol. 43, no. 4, pp. 367–376.

    Article  PubMed  CAS  Google Scholar 

  353. Kim, D.H., Mohapatra, G., Bollen, A., et al., Chromosomal Abnormalities in Glioblastoma Multiforme Tumors and Glioma Cell Lines Detected by Comparative Genomic Hybridization, Int. J. Cancer, 1995, vol. 60, no. 6, pp. 812–819.

    Article  PubMed  CAS  Google Scholar 

  354. Inda, M.M., Fan, X., Munoz, J., et al., Chromosomal Abnormalities in Human Glioblastomas: Gain in Chromosome 7p Correlating with Loss in Chromosome 10q, Mol. Carcinog., 2003, vol. 36, no. 1, pp. 6–14.

    Article  PubMed  CAS  Google Scholar 

  355. Roversi, G., Pfundt, R., Moroni, R.F., et al., Identification of Novel Genomic Markers Related to Progression to Glioblastoma Through Genomic Profiling of 25 Primary Glioma Cell Lines, Oncogene, 2006, vol. 25, no. 10, pp. 1571–1583.

    Article  PubMed  CAS  Google Scholar 

  356. Vranova, V., Necesalova, E., Kuglik, P., et al., Screening of Genomic Imbalances in Glioblastoma Multiforme Using High-Resolution Comparative Genomic Hybridization, Oncol. Rep., 2007, vol. 17, no. 2, pp. 457–464.

    PubMed  CAS  Google Scholar 

  357. Gardina, P.J., Lo, K.C., Lee, W., et al., Ploidy Status and Copy Number Aberrations in Primary Glioblastomas Defined by Integrated Analysis of Allelic Ratios, Signal Ratios and Loss of Heterozygosity Using 500 K SNP Mapping Arrays, BMC Genom., 2008, vol. 9, no. 489.

  358. Lo, K.C., Bailey, D., Burkhardt, T., et al., Comprehensive Analysis of Loss of Heterozygosity Events in Glioblastoma Using the 100K SNP Mapping Arrays and Comparison with Copy Number Abnormalities Defined by BAC Array Comparative Genomic Hybridization, Genes Chromosomes Cancer., 2008, vol. 47, no. 3, pp. 221–227.

    Article  PubMed  CAS  Google Scholar 

  359. Dahlback, H.S., Brandal, P., Meling, T.R., et al., Genomic Aberrations in 80 Cases of Primary Glioblastoma Multiforme: Pathogenetic Heterogeneity and Putative Cytogenetic Pathways, Genes Chromosomes Cancer., 2009, vol. 48, no. 10, pp. 908–924.

    Article  PubMed  CAS  Google Scholar 

  360. Speicher, M.R., Howe, C., Crotty, P., et al., Comparative Genomic Hybridization Detects Novel Deletions and Amplifications in Head and Neck Squamous Cell Carcinomas, Cancer Res., 1995, vol. 55, no. 5, pp. 1010–1013.

    PubMed  CAS  Google Scholar 

  361. Bockmuhl, U., Schwendel, A., Dietel, M., and Petersen, I., Distinct Patterns of Chromosomal Alterations in High- and Low-Grade Head and Neck Squamous Cell Carcinomas, Cancer Res., 1996, vol. 56, no. 23, pp. 5325–5329.

    PubMed  CAS  Google Scholar 

  362. Campbell, P.J., Stephens, P.J., Pleasance, E.D., et al., Identification of Somatically Acquired Rearrangements in Cancer Using Genome-Wide Massively Parallel Paired-End Sequencing, Nat. Genet., 2008, vol. 40, no. 6, pp. 722–729.

    Article  PubMed  CAS  Google Scholar 

  363. Belloni, E., Veronesi, G., Micucci, C., et al., Genomic Characterization of Asymptomatic CT-Detected Lung Cancers, Oncogene, 2011, vol. 30, no. 9, pp. 1117–1126.

    Article  PubMed  CAS  Google Scholar 

  364. Tiu, R.V., Gondek, L.P., O’Keefe, C.L., et al., Prognostic Impact of SNP Array Karyotyping in Myelodysplastic Syndromes and Related Myeloid Malignancies, Blood, 2011, vol. 117, no. 17, pp. 4552–4560.

    Article  PubMed  CAS  Google Scholar 

  365. Ambatipudi, S., Gerstung, M., Gowda, R., et al., Genomic Profiling of Advanced-Stage Oral Cancers Reveals Chromosome 11q Alterations as Markers of Poor Clinical Outcome, PLoS One, 2011, vol. 6, no. 2, p. e17250.

    Article  PubMed  CAS  Google Scholar 

  366. Welkoborsky, H.J., Bernauer, H.S., Riazimand, H.S., et al., Patterns of Chromosomal Aberrations in Metastasizing and Nonmetastasizing Squamous Cell Carcinomas of the Oropharynx and Hypopharynx, Ann. Otol. Rhinol. Laryngol., 2000, vol. 109, no. 4, pp. 401–410.

    PubMed  CAS  Google Scholar 

  367. Hauptmann, S., Denkert, C., Koch, I., et al., Genetic Alterations in Epithelial Ovarian Tumors Analyzed by Comparative Genomic Hybridization, Hum. Pathol., 2002, vol. 33, no. 6, pp. 632–641.

    Article  PubMed  CAS  Google Scholar 

  368. Mahlamaki, E.H., Hoglund, M., Gorunova, L., et al., Comparative Genomic Hybridization Reveals Frequent Gains of 20q, 8q, 11q, 12p, and 17q, and Losses of 18q, 9p, and 15q in Pancreatic Cancer, Genes Chromosomes Cancer., 1997, vol. 20, no. 4, pp. 383–391.

    Article  PubMed  CAS  Google Scholar 

  369. Campbell, P.J., Yachida, S., Mudie, L.J., et al., The Patterns and Dynamics of Genomic Instability in Metastatic Pancreatic Cancer, Nature, 2010, vol. 467, no. 7319, pp. 1109–1113.

    Article  PubMed  CAS  Google Scholar 

  370. Berger, M.F., Lawrence, M.S., Demichelis, F., et al., The Genomic Complexity of Primary Human Prostate Cancer, Nature, 2011, vol. 470, no. 7333, pp. 214–220.

    Article  PubMed  CAS  Google Scholar 

  371. Wada, N., Duh, Q.Y., Miura, D., et al., Chromosomal Aberrations by Comparative Genomic Hybridization in Hurthle Cell Thyroid Carcinomas Are Associated with Tumor Recurrence, J. Clin. Endocrinol. Metab., 2002, vol. 87, no. 10, pp. 4595–4601.

    Article  PubMed  CAS  Google Scholar 

  372. Mattison, J., Kool, J., Uren, A.G., et al., Novel Candidate Cancer Genes Identified by a Large-Scale Cross-Species Comparative Oncogenomics Approach, Cancer Res., 2010, vol. 70, no. 3, pp. 883–895.

    Article  PubMed  CAS  Google Scholar 

  373. Beroukhim, R., Mermel, C.H., Porter, D., et al., The Landscape of Somatic Copy-Number Alteration across Human Cancers, Nature, 2010, vol. 463, no. 7283, pp. 899–905.

    Article  PubMed  CAS  Google Scholar 

  374. Nobusawa, S., Lachuer, J., Wierinckx, A., et al., Intratumoral Patterns of Genomic Imbalance in Glioblastomas, Brain Pathol., 2010, vol. 20, no. 5, pp. 936–944.

    PubMed  CAS  Google Scholar 

  375. Tyson, J., Majerus, T.M., Walker, S., and Armour, J.A., Screening for Common Copy-Number Variants in Cancer Genes, Cancer Genet. Cytogenet., 2010, vol. 203, no. 2, pp. 316–323.

    Article  PubMed  CAS  Google Scholar 

  376. Fox, E.J., Salk, J.J., and Loeb, L.A., Cancer Genome Sequencing an Interim Analysis, Cancer Res., 2009, vol. 69, no. 12, pp. 4948–4950.

    Article  PubMed  CAS  Google Scholar 

  377. Gerlinger, M. and Swanton, C., How Darwinian Models Inform Therapeutic Failure Initiated by Clonal Heterogeneity in Cancer Medicine, Brit. J. Cancer, 2010, vol. 103, no. 8, pp. 1139–1143.

    Article  PubMed  CAS  Google Scholar 

  378. Swanton, C., Burrell, R.A., and Futreal, P.A., Breast Cancer Genome Heterogeneity: A Challenge to Personalized Medicine?, Breast Cancer Res., 2011, vol. 13, no. 1, p. 104.

    Article  PubMed  Google Scholar 

  379. Duesberg, P., Li, R., Sachs, R., et al., Cancer Drug Resistance: The Central Role of the Karyotype, Drug Resist. Updat., 2007, vol. 10, nos. 1–2, pp. 51–58.

    Article  PubMed  CAS  Google Scholar 

  380. Monni, O., Joensuu, H., Franssila, K., and Knuutila, S., DNA Copy Number Changes in Diffuse Large B-Cell Lymphoma Comparative Genomic Hybridization Study, Blood, 1996, vol. 87, no. 12, pp. 5269–5278.

    PubMed  CAS  Google Scholar 

  381. Frank, C.J., McClatchey, K.D., Devaney, K.O., and Carey, T.E., Evidence That Loss of Chromosome 18q Is Associated with Tumor Progression, Cancer Res., 1997, vol. 57, no. 5, pp. 824–827.

    PubMed  CAS  Google Scholar 

  382. Rickert, C.H., Dockhorn-Dworniczak, B., Busch, G., et al., Increased Chromosomal Imbalances in Recurrent Pituitary Adenomas, Acta Neuropathol., 2001, vol. 102, no. 6, pp. 615–620.

    PubMed  CAS  Google Scholar 

  383. Nishio, J., Iwasaki, H., Ishiguro, M., et al., Synovial Sarcoma with a Secondary Chromosome Change Der(22)T(17;22)(Q12;Q12), Cancer Genet. Cytogenet., 2002, vol. 137, no. 1, pp. 23–28.

    Article  PubMed  CAS  Google Scholar 

  384. Gomori, E., Fulop, Z., Meszaros, I., et al., Microsatellite Analysis of Primary and Recurrent Glial Tumors Suggests Different Modalities of Clonal Evolution of Tumor Cells, J. Neuropathol. Exp. Neurol., 2002, vol. 61, no. 5, pp. 396–402.

    PubMed  CAS  Google Scholar 

  385. Waldman, F.M., DeVries, S., Chew, K.L., et al., Chromosomal Alterations in Ductal Carcinomas in Situ and Their in Situ Recurrences, J. Natl. Cancer Inst., 2000, vol. 92, no. 4, pp. 313–320.

    Article  PubMed  CAS  Google Scholar 

  386. Ness, G.O., Lybaek, H., Arnes, J., and Rodahl, E., Chromosomal Imbalances in a Recurrent Solitary Fibrous Tumor of the Orbit, Cancer Genet. Cytogenet., 2005, vol. 162, no. 1, pp. 38–44.

    Article  PubMed  CAS  Google Scholar 

  387. Heinrich, U.R., Brieger, J., Gosepath, J., et al., Frequent Chromosomal Gains in Recurrent Juvenile Nasopharyngeal Angiofibroma, Cancer Genet. Cytogenet., 2007, no. 2, pp. 138–143.

  388. Korshunov, A., Benner, A., Remke, M., et al., Accumulation of Genomic Aberrations during Clinical Progression of Medulloblastoma, Acta Neuropathol., 2008, vol. 116, no. 4, pp. 383–390.

    Article  PubMed  CAS  Google Scholar 

  389. Zieger, K., Wiuf, C., Jensen, K.M., et al., Chromosomal Imbalance in the Progression of High-Risk Nonmuscle Invasive Bladder Cancer, BMC Cancer, 2009, vol. 9, no. 149.

  390. Cimini, D. and Degrassi, F., Aneuploidy: A Matter of Bad Connections, Trends Cell. Biol., 2005, vol. 15, no. 8, pp. 442–451.

    Article  PubMed  CAS  Google Scholar 

  391. Li, J.J. and Li, S.A., Mitotic Kinases: The Key to Duplication, Segregation, and Cytokinesis Errors, Chromosomal Instability, and Oncogenesis, Pharmacol. Ther., 2006, vol. 111, no. 3, pp. 974–984.

    Article  PubMed  CAS  Google Scholar 

  392. Cimini, D., Merotelic Kinetochore Orientation, Aneuploidy, and Cancer, Biochim. Biophys. Acta, 2008, vol. 1786, no. 1, pp. 32–40.

    PubMed  CAS  Google Scholar 

  393. Holland, A.J. and Cleveland, D.W., Boveri Revisited: Chromosomal Instability, Aneuploidy and Tumorigenesis, Nat. Rev. Mol. Cell. Biol., 2009, vol. 10, no. 7, pp. 478–487.

    Article  PubMed  CAS  Google Scholar 

  394. McClelland, S.E., Burrell, R.A., and Swanton, C., Chromosomal Instability: A Composite Phenotype That Influences Sensitivity to Chemotherapy, Cell Cycle, 2009, vol. 8, no. 20, pp. 3262–3266.

    Article  PubMed  CAS  Google Scholar 

  395. Chandhok, N.S. and Pellman, D., A Little CIN May Cost a Lot: Revisiting Aneuploidy and Cancer, Curr. Opin. Genet. Dev., 2009, vol. 19, no. 1, pp. 74–81.

    Article  PubMed  CAS  Google Scholar 

  396. Rao, C.V., Yamada, H.Y., Yao, Y., and Dai, W., Enhanced Genomic Instabilities Caused by Deregulated Microtubule Dynamics and Chromosome Segregation: A Perspective from Genetic Studies in Mice, Carcinogenesis, 2009, vol. 30, no. 9, pp. 1469–1474.

    Article  PubMed  CAS  Google Scholar 

  397. Dillon, L.W., Burrow, A.A., and Wang, Y.H., DNA Instability at Chromosomal Fragile Sites in Cancer, Curr. Genom., 2010, vol. 11, no. 5, pp. 326–337.

    Article  CAS  Google Scholar 

  398. Ting, D.T., Lipson, D., Paul, S., et al., Aberrant Overexpression of Satellite Repeats in Pancreatic and Other Epithelial Cancers, Science, 2011, vol. 331, no. 6017, pp. 593–596.

    Article  PubMed  CAS  Google Scholar 

  399. Krajcovic, M., Johnson, N.B., Sun, Q., et al., A Nongenetic Route to Aneuploidy in Human Cancers, Nat. Cell. Biol., 2011, vol. 13, no. 3, pp. 324–330.

    Article  PubMed  CAS  Google Scholar 

  400. Kitada, K., Taima, A., Ogasawara, K., et al., Chromosome-Specific Segmentation Revealed by Structural Analysis of Individually Isolated Chromosomes, Genes Chromosomes Cancer., 2011, vol. 50, no. 4, pp. 217–227.

    PubMed  CAS  Google Scholar 

  401. Tubio, J.M. and Estivill, X., Cancer: When Catastrophe Strikes a Cell, Nature, 2011, vol. 470, no. 7335, pp. 476–477.

    Article  PubMed  CAS  Google Scholar 

  402. Parsons, D.W., Li, M., Zhang, X., et al., The Genetic Landscape of the Childhood Cancer Medulloblastoma, Science, 2011, vol. 331, no. 6016, pp. 435–439.

    Article  PubMed  CAS  Google Scholar 

  403. Kan, Z., Jaiswal, B.S., Stinson, J., et al., Diverse Somatic Mutation Patterns and Pathway Alterations in Human Cancers, Nature, 2010, vol. 466, no. 7308, pp. 869–873.

    Article  PubMed  CAS  Google Scholar 

  404. Pleasance, E.D., Cheetham, R.K., Stephens, P.J., et al., A Comprehensive Catalogue of Somatic Mutations from a Human Cancer Genome, Nature, 2010, vol. 463, no. 7278, pp. 191–196.

    Article  PubMed  CAS  Google Scholar 

  405. Sharma, S.V. and Settleman, J., Oncogene Addiction: Setting the Stage for Molecularly Targeted Cancer Therapy, Genes Dev., 2007, vol. 21, no. 24, pp. 3214–3231.

    Article  PubMed  CAS  Google Scholar 

  406. Heng, H.H., Cancer Genome Sequencing: The Challenges Ahead, BioEssays, 2007, no. 8, pp. 783–794.

  407. Duesberg, P., Li, R., Fabarius, A., and Hehlmann, R., The Chromosomal Basis of Cancer, Cell Oncol., 2005, vol. 27, nos 5–6, pp. 293–318.

    PubMed  CAS  Google Scholar 

  408. Lee, A.J., Endesfelder, D., Rowan, A.J., et al., Chromosomal Instability Confers Intrinsic Multidrug Resistance, Cancer Res., 2011, vol. 71, no. 5, pp. 1858–1870.

    Article  PubMed  CAS  Google Scholar 

  409. Marusyk, A. and Kornelia, P., Tumor Heterogeneity: Causes and Consequences, Biochim. Biophys. Acta, 2010, vol. 1805, no. 1, pp. 105–117.

    PubMed  CAS  Google Scholar 

  410. Navin, N., Kendall, J., Troge, J., et al., Tumour Evolution Inferred by Single Cell Sequencing, Nature, 2011, vol. 472, no. 7341, pp. 90–94.

    Article  PubMed  CAS  Google Scholar 

  411. Navin, N. and Hicks, J., Future Medical Applications of Single Cell Sequencing in Cancer, Genome Med., 2011, vol. 3, no. 51.

  412. Heng, H.H., Liu, G., Stevens, J.B., et al., Decoding the Genome Beyond Sequencing: The New Phase of Genomic Research, Genomics, 2011. doi: 10.1016/j.ygeno.2011.05.008

  413. Heng, H.H., Stevens, J.B., Bremer, S.W., et al., The Evolutionary Mechanism of Cancer, J. Cell Biochem., 2010, vol. 109, no. 6, pp. 1072–1084.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kavsan.

Additional information

The article is published in the original.

About this article

Cite this article

Stepanenko, A.A., Kavsan, V.M. Immortalization and malignant transformation of Eukaryotic cells. Cytol. Genet. 46, 96–129 (2012). https://doi.org/10.3103/S0095452712020041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452712020041

Keywords

Navigation