Skip to main content
Log in

Observation of Brownian relaxation of magnetic nanoparticles using HTS SQUID

  • Biophysics and Medical Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

We analyzed the sensitivity of a separationless immunoassay scheme using functionalized magnetic nanoparticles (MNPs) and a sensitive HTS SQUID magnetometer. The signal of a 100 μL sample at a concentration of 1 mg/mL and field of 7.5 nT was 20 mΦ0. This makes it possible for the sensitivity to be within the range of 50 ng/mL at the required time of up to 100 s per a point in the frequency spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Spiridonova, Biochem. (Moscow) Suppl. Ser. B: Biomed. Chem. 4, 138 (2010).

    Article  MathSciNet  Google Scholar 

  2. C. Tuerk and L. Gold, Science 249, 505 (1990).

    Article  ADS  Google Scholar 

  3. K. Enpuku, T. Minotani, M. Hotta, and A. Nakahodo, IEEE Trans. Appl. Supercond. 11, 661 (2001).

    Article  Google Scholar 

  4. P. Astalan, F. Ahrentorp, C. Johansson, K. Larsson, and A. Krozer, Biosens. Bioelectron. 19, 945 (2004).

    Article  Google Scholar 

  5. K. Tsukamoto, D. Saitoh, N. Suzuki, et al., IEEE Trans. Appl. Supercond. 15, 656 (2005).

    Article  Google Scholar 

  6. F. Oisjoen, P. Magnelind, A. Kalabukhov, and D. Winkler, Supercond. Sci. Technol. 21, 034004 (2008).

    Article  ADS  Google Scholar 

  7. M. Chukharkin, A. Kalabukhov, J. F. Schneiderman, et al., Appl. Phys. Lett. 101, 042602 (2012).

    Article  ADS  Google Scholar 

  8. M. B. Ketchen, J. Appl. Phys. 58, 1 (1985).

    Article  Google Scholar 

  9. C. Carr, A. Eulenburg, E. Romans, et al., IEEE Trans. Appl. Supercond. 9, 3105 (2002).

    Article  Google Scholar 

  10. P. A. Rosenthal, M. R. Beasley, K. Char, M. S. Colclough, and G. Zaharchuk, Appl. Phys. Lett. 59, 3482 (1991).

    Article  ADS  Google Scholar 

  11. P. Seidel, F. Schrey, L. Dorrer, et al., Supercond. Sci. Technol. 15, 150 (2002).

    Article  ADS  Google Scholar 

  12. F. Oisjoen, J. F. Schneiderman, M. Zaborowska, et al., IEEE Trans. Appl. Supercond. 19, 848 (2009).

    Article  ADS  Google Scholar 

  13. https://www.acreo.se.

  14. V. K. Kornev, I. I. Soloviev, N. V. Klenov, and N. V. Kolotinskiy, IEEE Trans. Appl. Supercond. 26, 1601205 (2016).

    Google Scholar 

  15. V. K. Kornev, I. I. Soloviev, N. V. Klenov, and O. A. Mukhanov, Supercond. Sci. Technol. 20, S362 (2007).

    Article  ADS  Google Scholar 

  16. V. K. Kornev, I. I. Soloviev, N. V. Klenov, et al., IEEE Trans. Appl. Supercond. 21, 713 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Snigirev.

Additional information

Original Russian Text © O.V. Snigirev, I.I. Soloviev, A.S. Kalabukhov, M.L. Chukharkin, 2017, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2017, No. 1, pp. 94–99.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snigirev, O.V., Soloviev, I.I., Kalabukhov, A.S. et al. Observation of Brownian relaxation of magnetic nanoparticles using HTS SQUID. Moscow Univ. Phys. 72, 95–100 (2017). https://doi.org/10.3103/S0027134917010143

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134917010143

Keywords

Navigation