Skip to main content
Log in

Creep Modelling of Rotating Spherical Shell Made Up of Magnesium and Rubber

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The creep modelling in rotating spherical shell is analyzed numerically on the dependence of isotropic material (rubber) and transversely isotropic material (magnesium). The objective of the study has been the identification of asymptotic creep phenomenon in rotating body by generalization of strain components. This paper contains an asymptotic solution for the creep stress distribution in the spherical shell made up of magnesium and rubber. The governing equations to compute the creep effects are given, and the mathematical results obtained in the modelling of shell problem are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. K. Penny, “The creep of spherical shells containing discontinuities,” Int. J. Mech. Sci. 9 (6), 373–388 (1967). https://doi.org/10.1016/0020-7403(67)90042-2

    Article  Google Scholar 

  2. B. R. Seth, “Creep transition”, in Creep Transition in Cylinders. International Centre for Mechanical Sciences, Vol. 149 (Springer, Vienna, 1972), pp. 5–18. https://doi.org/10.1007/978-3-7091-2955-5_1

  3. N. S. Bhatnagar, M. P. S. Kulkarni, and V. K. Arya, “Steady-state creep of orthotropic rotating disks of variable thickness,” Nuclear Eng. Des. 91 (2), 121–141 (1986). https://doi.org/10.1016/0029-5493(86)90200-1

    Article  Google Scholar 

  4. G. Yagawa, N. Miyazaki, and Y. Ando, “An analysis of elastic-plastic creep buckling of axi-symmetric shells by the finite element method,” Arch. Mech. 27, 869–882 (1975).

    MathSciNet  Google Scholar 

  5. G. I. L’vov, “Interaction of spherical plates and shells with rigid cradles under creep conditions,” Sov. Appl. Mech. 21, 591–595 (1985). https://doi.org/10.1007/BF00887571

    Article  ADS  Google Scholar 

  6. M. Kojić and K. J. Bathe, “Thermo-elastic-plastic and creep analysis of shell structures,” Comp. Struct. 26 (1–2), 135–143 (1987). https://doi.org/10.1016/0045-7949(87)90243-4

  7. S. Takezono and K. Migita, “The creep of anisotropic multi-layered moderately thick shells of revolution,” in Computational Mechanics’88, Ed. by S. N. Atluri and G. Yagawa (Springer, Berlin, Heidelberg, 1988). https://doi.org/10.1007/978-3-642-61381-4_151

    Book  Google Scholar 

  8. M. Ardes, F. H. Busse, and J. Wicht, “Thermal convection in rotating spherical shells,” Phys. Earth Planet. Inter. 99 (1–2), 55–67 (1997). https://doi.org/10.1016/S0031-9201(96)03200-1

  9. E. Carrera, “Theories and finite elements for multilayered, anisotropic, composite plates and shells,” Arch. Comput. Meth. Eng. 9 (2), 87–140 (2002). https://doi.org/10.1007/BF02736649

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Tornabene and E. Viola, “Free vibration analysis of functionally graded panels and shells of revolution,” Meccanica 44 (3), 255–281 (2009). https://doi.org/10.1007/s11012-008-9167-x

    Article  MATH  Google Scholar 

  11. S. S. Yakovlev, S. N. Larin, Y. A. Sobolev, and V. I. Platonov, “Isothermal deformation of dome-shaped shells made of high-strength anisotropic materials in the presence of creep,” Russ. Eng. Res. 35 (2), 116–20 (2015). https://doi.org/10.3103/S1068798X15020240

    Article  Google Scholar 

  12. P. Thakur, G. Verma, D. S. Pathania, abd S. Bir, “Thermal creep stress and strain analysis in non-homogeneous spherical shell,” J. Theor. Appl. Mech. 55 (4), 1155–1165 (2017). https://doi.org/10.15632/jtam-pl.55.4.1155

    Article  Google Scholar 

  13. P. Thakur and M. Sethi, “Elasto-plastic deformation in an orthotropic spherical shell subjected to temperature gradient,” Math. Mech. Solids 25 (1), 26–34 (2020). https://doi.org/10.1177/1081286519857128

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Thakur, M. Sethi, K. Gupta, and R. M. Bhardwaj, “Thermal stress analysis in a hemispherical shell made of transversely isotropic materials under pressure and thermo-mechanical loads,” ZAMM, 101, e202100208 (2021). https://doi.org/10.1002/zamm.202100208

  15. P. Thakur, G. Verma, D. S. Pathania, and B. S. Satya, “Elastic-plastic transition on rotating spherical shells in dependence of compressibility,” Kragujevac J. Sci. 39, 5–16 (2017). https://doi.org/10.5937/kgjsci1739005t

    Article  Google Scholar 

  16. B. R. Seth, “Transition theory of elastic- plastic deformation, creep and relaxation,” Nature 195, 896–897 (1962). https://doi.org/10.1038/195896a0

    Article  ADS  Google Scholar 

  17. B. R. Seth, “Measure concept in mechanics,” Int. J. Non-Lin. Mech. 1 (1), 35–40 (1966). https://doi.org/10.1016/0020-7462(66)90016-3

    Article  Google Scholar 

  18. I. S. Sokolnikoff, Mathematical Theory of Elasticity (Mc-Graw Hill, New York, 1946).

    Google Scholar 

  19. G. Verma and P. Rana, “Creep transition in the rotating spherical shell under the effect density variable by seth’ transition theory,” in Proceedings of the International Conference on Mathematical Sciences and its Applications 2016, Ed. by B. P. Chamola and P. Kumari (AIP, 2017), pp. 0200201–20. https://doi.org/10.1063/1.4973270

  20. P. Thakur, M. Sethi, N. Kumar, et al, “Analytical solution of hyperbolic deformable disk having variable density,” Mech. Solids 56 (6), 1039–1046 (2021). https://doi.org/10.3103/S0025654421060194

    Article  ADS  Google Scholar 

  21. G. Verma and P. Thakur, “Comparative creep analysis of spherical shell made up of different materials,” Mech. Solids 57, 1214–1221 (2022). https://doi.org/10.3103/S0025654422050120

    Article  ADS  Google Scholar 

  22. P. Thakur and M. Sethi, “Elasto-plastic deformation in isotropic material disk with shaft subjected to load and variable density,” J. Rubber Res. 23 (2), 69–78 (2020). https://doi.org/10.1007/s42464-020-00038-8

    Article  Google Scholar 

  23. P. Thakur, M. Sethi, and N. Kumar, “Elastic-plastic stresses in a rotating disc of transversely isotropic material fitted with a shaft and subjected to thermal gradient,” Meccanica 56, 1165–1175 (2021). https://doi.org/10.1007/s11012-021-01318-2

    Article  MathSciNet  Google Scholar 

  24. P. Thakur, M. Sethi, and N. Kumar, “Stress analysis in an isotropic hyperbolic rotating disk fitted with rigid shaft,” Z. Angew. Math. Phys. 73, 23(2022). https://doi.org/10.1007/s00033-021-01663-y

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Verma or P. Thakur.

Ethics declarations

The authors certify that they have no affiliations with or involvement in any organization or non-financial interest in the subject matter or materials discussed in this manuscript.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, G., Thakur, P. Creep Modelling of Rotating Spherical Shell Made Up of Magnesium and Rubber. Mech. Solids 58, 554–562 (2023). https://doi.org/10.3103/S0025654422601124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654422601124

Keywords:

Navigation