Skip to main content
Log in

Analytical Solution of Hyperbolic Deformable Disk having Variable Density

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract—

This paper deals with the study of stress distribution and angular speed for hyperbolic rotating disk made of isotropic materials having variable density parameter. The effects of angular speed and stresses in the hyperbolic disk with variable density have been discussed by using transition theory. With the effect of density parameter, the rotating disk requires higher values of angular speed for the initial/fully –plastic stages and the values of hoop stress are increased at the inner surface of hyperbolic disk made of isotropic (i.e. rubber/copper) materials. The hoop stress is maximum at the inner surface of the convergent disk made of copper material, but linear in the case of the disk made of rubber material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. Y. Reddy and H. Srinath, “Elastic stresses in a rotating anisotropic annular disk of variable thickness and variable density,” Int. J. Mech. Sci., 16 (2), 85–89 (1974). https://doi.org/10.1016/0020-7403(74)90078-2

    Article  Google Scholar 

  2. T. Apatay and A. N. Eraslan, “Elastic deformation of rotating parabolic discs: analytical solutions,” J. Faculty Eng. Architect. Gazi Uni. 18, 115–135 (2003).

    Google Scholar 

  3. A. N. Eraslan, “Elastoplastic deformations of rotating parabolic solid disks using Tresca’s yield criterion,” Eur. J. Mech. A/Solids 22, 861–874 (2003). https://doi.org/10.1016/S0997-7538(03)00068-8

    Article  MATH  ADS  Google Scholar 

  4. F. Vivio and V. Vullo, “Elastic stress analysis of rotating converging conical disks subjected to thermal load and having variable density along the radius,” Int. J. Solids Struct. 44, 7767–7784 (2007). https://doi.org/10.1016/j.ijsolstr.2007.05.013

    Article  MATH  Google Scholar 

  5. P. M. Calderale, F. Vivio, and V. Vullo, “Thermal stresses of rotating hyperbolic disks as particular case of non-linearly variable thickness disks,” J. Therm. Stress. 35, 877–891 (2012). https://doi.org/10.1080/01495739.2012.720164

    Article  Google Scholar 

  6. X. L. Peng and X. F. Li, “Effects of gradient on stress distribution in rotating functionally graded solid disks,” J. Mech. Sci. Technol. 26, 1483–1492 (2012). https://doi.org/10.1007/s12206-012-0339-1

    Article  Google Scholar 

  7. F. Vivio, V. Vullo, and P. Cifani, “Theoretical stress analysis of rotating hyperbolic disk without singularities subjected to thermal load,” J. Therm. Stress. 37 (2), 117–136 (2014). https://doi.org/10.1080/01495739.2013.839526

    Article  Google Scholar 

  8. A. A. Burenin, E. P. Dats, and E. V. Murashkin, “Formation of the residual stress field under local thermal actions,” Mech. Solids 49, 218–224 (2014). https://doi.org/10.3103/S0025654414020113

    Article  ADS  Google Scholar 

  9. V. Yıldırım, “Analytic solutions to power-law graded hyperbolic rotating discs subjected to different boundary conditions,” Int. J. Eng. Appl. Sci. 8 (1), 38–52 (2016). https://doi.org/10.24107/ijeas.251262

    Article  Google Scholar 

  10. V. Yıldırım, “A parametric study on the centrifugal force-induced stress and displacements in power-law graded hyperbolic discs,” Lat. Am. J. Solids Struct. 15 (4) (2018). https://doi.org/10.1590/1679-78254229

  11. M. Salehian, B. Shahriari, and M. Yousefi, “Investigating the effect of angular acceleration of the rotating disk having variable thickness and density function on shear stress and tangential displacement,” J. Braz. Soc. Mech. Sci. Eng. 41, 31 (2019). https://doi.org/10.1007/s40430-018-1523-8

    Article  Google Scholar 

  12. R. Singh, R. Saxena, K. Khanna, and V. Gupta, “Creep response of rotating composite discs having exponential hyperbolic linear and constant thickness profiles,” Def. Sci. J. 70, 292–298 (2020).

    Article  Google Scholar 

  13. M. Sethi and P. Thakur, “Elastoplastic deformation in isotropic material disk with shaft subjected to load and variable density,” J. Rubber Res. 23, 69–78 (2020). https://doi.org/10.1007/s42464-020-00038-8

    Article  Google Scholar 

  14. G. M. Sevastyanov, “Torsion with circular shear of a Mooney–Rivlin solid,” Mech. Solids 55, 273–276 (2020). https://doi.org/10.3103/S0025654420020156

    Article  ADS  Google Scholar 

  15. P. Thakur, N. Kumar, and Sukhvinder, “Elasto-plastic density variation in a deformable disk,” Struct. Integr. Life 20, 27–32 (2020).

    MathSciNet  Google Scholar 

  16. P. Thakur, N. Gupta, M. Sethi, and K. Gupta, “Effect of density parameter in a disk made of orthotropic material and rubber,” J. Rubber Res. 23, 193–201 (2020). https://doi.org/10.1007/s42464-020-00049-5

    Article  Google Scholar 

  17. P. Thakur and M. Sethi, “Elastoplastic deformation in an orthotropic spherical shell subjected to temperature gradient,” Mat. Mech. Solids, 25, 26–34 (2020). https://doi.org/10.1177/1081286519857128

    Article  MathSciNet  MATH  Google Scholar 

  18. I. S. Sokolnikoff, Mathematical Theory of Elasticity, 2nd ed. (McGraw-Hill Book Company, New York, 1956).

    MATH  Google Scholar 

  19. B. R. Seth, “Transition theory of elastic-plastic deformation, creep and relaxation,” Nature, 195, 896–897 (1962). https://doi.org/10.1038/195896a0

    Article  ADS  Google Scholar 

  20. B. R. Seth, “Measure concept in mechanics,” Int. J. Non-Lin. Mech. 1, 35–40 (1966). https://doi.org/10.1016/0020-7462(66)90016-3

    Article  Google Scholar 

  21. S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill Book Company, New York, 1970).

    MATH  Google Scholar 

  22. J. Chakrabarty, Theory of Plasticity (McGraw-Hill Book Company, New York, 1998).

    Google Scholar 

  23. P. Thakur and M. Sethi, “Creep deformation and stress analysis in a transversely material disc subjected to rigid shaft,” Mat. Mech. Solids 25, 17–25 (2020). https://doi.org/10.1177/1081286519857109

    Article  MATH  Google Scholar 

  24. A. G. Temesgen, S. B. Singh, and P. Thakur, “Elastoplastic analysis in functionally graded thick–walled rotating transversely isotropic cylinder under a radial temperature gradient and uniform pressure,” Mat. Mech. Solids 26, 5–17 (2020). https://doi.org/10.1177/1081286520934041

    Article  MathSciNet  MATH  Google Scholar 

  25. A. G. Temesgen, S. B. Singh, and P. Thakur, “Modeling of creep deformation of a transversely isotropic rotating disc with a shaft having variable density and subjected to a thermal gradient,” Therm. Sci. Eng. Prog. 20, 100745 (2020). https://doi.org/10.1016/j.tsep.2020.100745

    Article  Google Scholar 

  26. P. Thakur, M. Sethi, N. Gupta, and K. Gupta, “Thermal effects in rectangular plate made of rubber, copper and glass materials,” J. Rubber Res. 24, 147–155 (2021). https://doi.org/10.1007/s42464-020-00080-6

    Article  Google Scholar 

  27. P. Thakur, N. Kumar, and M. Sethi, “Elastic-plastic stresses in a rotating disc of transversely isotropic material fitted with a shaft and subjected to thermal gradient,” Meccanica 56, 1165–1175 (2021). https://doi.org/10.1007/s11012-021-01318-2

    Article  MathSciNet  Google Scholar 

  28. P. Thakur, M. Sethi, N. Kumar, et al., “Thermal effects in a rotating disk made of rubber and magnesium materials and having variable density,” J. Rubber Res. (2021). https://doi.org/10.1007/s42464-021-00107-6

    Book  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Thakur.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, P., Sethi, M., Kumar, N. et al. Analytical Solution of Hyperbolic Deformable Disk having Variable Density. Mech. Solids 56, 1039–1046 (2021). https://doi.org/10.3103/S0025654421060194

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654421060194

Keywords:

Navigation