Skip to main content
Log in

The Study of Strength of Composites under Impact

  • STRUCTURAL MECHANICS AND STRENGTH OF FLIGHT VEHICLES
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

A low-velocity vertical impact method was considered on various composite specimens. Impact damage areas were studied by the ultrasonic echo-pulse method, the damage size dependence on impact energy was determined in various polymer composite materials. Damaged specimens were tested in compression to determine their residual strength. Layer-by-layer assessment of damage was carried out for a set of specimens by the computed tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Kablov, E.N., Aerospace Material Science in the 21st Century. The Future and Challenges. Aircraft Materials, in Izbrannye trudy VIAM 1932–2002 (Selected VIAM Publications in 1932–2002), Moscow: MISIS, VIAM, 2002, pp. 23–47.

    Google Scholar 

  2. Kolosova, A.S., Sokol’skaya, M.K., Vitkalova, I.A., Torlova, A.S., and Pikalov, E.S., Up-to-Date Polymer Composite Materials and their Application, Mezhdunarodnyi Zhurnal Prikladnykh i Fundamental’nykh Issledovanii, 2018, no. 5, part 1, pp. 245–256.

    Google Scholar 

  3. Savin, S.P., Application of the Modern Polymer Composites in the MS-21 Airframe Design, Izv. SamNTs RAN, 2012, no. 4, part 2, pp. 686–693.

    Google Scholar 

  4. Bazhenov, S.L., Berlin, A.A., Kul’kov, A.A., and Oshmyan, V.T., Polimernye kompotsionnye materialy (Polymer Composites), Dolgoprudnyi: Intellekt, 2010, 347 p.

    Google Scholar 

  5. Bilisik, K., Multiaxis Three-Dimensional Weaving for Composites: A Review, Textile Research Journal, 2012, vol. 82, no. 7, pp. 725–743.

    Article  Google Scholar 

  6. Khmel’nitskii, Ya.A. and Salina, M.S., Expansion of the Product Range of Polymeric Composite Structural Members of Spacecraft Solar Batteries, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 4, pp. 129–132 [Russian Aeronautics (Engl. Transl.), vol. 61, no. 4, pp. 651–654].

    Google Scholar 

  7. Khaliulin, V.I. and Batrakov, V.V., Analysis of Innovative Methods Application for Production of Composite Integral Parts, Izv. Vuz. Av. Tekhnika, 2016, vol. 59, no. 3, pp. 129–133 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 3, pp. 433–437].

    Google Scholar 

  8. Fegenbaum, Yu.M., Dubinskii, S.V., Bozhevalov, D.G., Sokolov, Yu.S., et al., Obespechenie prochnosti kompozitnykh aviatsionnykh konstruktsii c uchetom sluchainykh ekspluatatsionnykh udarnykh vozdeistvii (Ensuring the Strength of Composite Aircraft Structures for Random Operational Impacts), Moscow: Tekhnosfera, 2018, 506 p.

    Google Scholar 

  9. Kan, H.P. and Cordero, R., and Whitehead, R.S., Advanced Certification Methodology for Composite Structures, Washington, 1997, (Final Report DOT/FAA/AR-96/111).

  10. Kolesnikov, Yu.V. and Morozov, E.M., Mekhanika kontaktnogo razrusheniya (Contact Fracture Mechanics), Moscow: Izd. LKI, 2013, 224 p.

    Google Scholar 

  11. Romano, F., Di Caprio, F., and Mercurio, U., Compression after Impact Analysis of Composite Panels and Equivalent Hole Method, Procedia Engineering, 2016, vol. 167, pp. 182–189.

    Article  Google Scholar 

  12. Singh, H., Hazarika, B.Ch., and Dey, S., Low Velocity Impact Responses of Functionally Graded Plates, Procedia Engineering, 2017, vol. 173, pp. 264–270.

    Article  Google Scholar 

  13. Kursun, A., Senel, M., and Enginsoy, H.M., Experimental and Numerical Analysis of Low Velocity Impact on a Preloaded Composite Plate, Advances in Engineering Software, 2015, vol. 90, pp. 41–52.

    Article  Google Scholar 

  14. Sidorov, I.N., Mitryaikin, A.V., Gorelov, A.V., and Shabalin, L.P., Study of the Strength of Composite Main Rotor Blade with Impact Damages Based on Equilibrium Theory, Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 2019, vol. 21, no. 3, pp. 343–350.

    Article  Google Scholar 

  15. Tan, K.T., Watanabe, N., and Iwahori, Y., Finite Element Model for Compression after Impact Behaviour of Stitched Composites, Composites. Part B: Engineering, 2015, vol. 79, pp. 53–60.

    Article  Google Scholar 

  16. Kokurov, A.M. and Odintsev, I.N., Analysis of Structural Elements Made of Composite Materials with Defects, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no 1, pp. 21–25 [Russian Aeronautics (Engl. Transl.), vol. 60, no. 1, pp. 21–26].

    Google Scholar 

  17. GOST (State Standard) 33496-2015: Polymer Composites. Method for Testing the Resistance to Damage during a Falling Weight Impact, 2016.

  18. GOST (State Standard) 33495-2015: Polymer Composites. Test Method for Compression after Impact, 2016.

Download references

ACKNOWLEDGEMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 19-08-00577.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Bezzametnov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitryaikin, V.I., Bezzametnov, O.N. & Krotova, E.V. The Study of Strength of Composites under Impact. Russ. Aeronaut. 63, 397–404 (2020). https://doi.org/10.3103/S1068799820030046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799820030046

Keywords

Navigation