Skip to main content
Log in

Electroactivation: An Advanced Method of Processing of Whey with Medium Protein Content

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The results of the studies of electroactivation, an emerging method of nonwaste processing of secondary dairy products, namely, whey with a medium protein content, in order to recover whey proteins into protein mineral concentrates, are presented. Processing was carried out in electrolyzers with different ratios of the volume of the processed whey to the surface of the electrode/cathode with different constructive and geometric parameters, which influences the specific energy consumption per unit volume. The main purpose was the maximum recovery of whey proteins into protein mineral concentrates at low energy costs, and the exclusion of “dead” or inefficient zones of diaphragm electrolyzers. The degree of the recovery of whey protein depending on the pH values, the redox potential, and the temperature during electroactivation was analyzed. This justifies the optimization of the technical parameters of electrolyzers for whey with a medium protein content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

Similar content being viewed by others

REFERENCES

  1. Guo, M. and Wang, G., History of whey production and whey protein manufacturing, in Whey Protein Production, Chemistry, Functionality, and Applications, Mingruo Guo, Ed., Hoboken, NJ: John Wiley and Sons, 2019, p. 1. https://doi.org/10.1002/9781119256052.ch1

    Book  Google Scholar 

  2. Mehra, R., Kumar, H., Kumar, N., Ranvir, S., et al., Whey proteins processing and emergent derivatives: An insight perspective from constituents, bioactivities, functionalities to therapeutic applications, J. Funct. Foods, 2021, vol. 87, p. 1. https://doi.org/10.1016/j.jff.2021.104760

    Article  Google Scholar 

  3. Minj, S. and Anand, S., Whey proteins and its derivatives: Bioactivity, functionality, and current applications, Dairy, 2020, vol. 1, no. 3, p. 233. https://doi.org/10.3390/dairy1030016

    Article  Google Scholar 

  4. Israni, N., Venkatachalam, P., Gajaraj, B., Varalakshmi, K.N., et al., Whey valorization for sustainable polyhydroxyalkanoate production by Bacillus megaterium: Production, characterization and in vitro biocompatibility evaluation, J. Environ. Manage., 2020, vol. 255, p. 1. https://doi.org/10.1016/j.jenvman.2019.109884

    Article  Google Scholar 

  5. Bintsis, T. and Papademas, P., Sustainable approaches in whey cheese production: A review, Dairy, 2023, vol. 4, no. 2, p. 249. https://doi.org/10.3390/dairy4020018

    Article  Google Scholar 

  6. Kazimierowicz, J., Zieliński, M., Bartkowska, I. and Dębowski, M., Effect of acid whey pretreatment using ultrasonic disintegration on the removal of organic compounds and anaerobic digestion efficiency, Int. J. Environ. Res. Public Health, 2022, vol. 19, p. 1. https://doi.org/10.3390/ijerph191811362

    Article  Google Scholar 

  7. Buchanan, D., Martindale, W., Romeih, E., and Hebishy, E., Recent advances in whey processing and valorisation: Technological and environmental perspectives, Int. J. Dairy Technol., 2023, vol. 76, no. 2, p. 291. https://doi.org/10.1111/1471-0307.12935

    Article  Google Scholar 

  8. Pires, A.F., Marnotes, N.G., Rubio, O.D., Garcia, A.C., et al., Dairy by-products: A review on the valorization of whey and second cheese whey, Foods, 2021, vol. 10, no. 5, p. 1. https://doi.org/10.3390/foods10051067

    Article  Google Scholar 

  9. Ahmed, M.E., Ahmed, H., and Ahmed R.A.H., Therapeutic benefits and applications of whey protein, Int. J. Curr. Microbiol. App. Sci., 2020, vol. 9, no. 7, p. 337. https://doi.org/10.20546/ijcmas.2020.907.036

    Article  MathSciNet  Google Scholar 

  10. Panghal, A., Patidar, R., Jaglan, S., Chhikara, N., et al., Whey valorization: Current options and future scenario—a critical review, Nutr. Food Sci., 2018, vol. 48, no. 3, p. 520. https://doi.org/10.1108/NFS-01-2018-0017

    Article  Google Scholar 

  11. Ganju, S. and Gogate, P.R., A review on approaches for efficient recovery of whey proteins from dairy industry effluents, J. Food Eng., 2017, vol. 215, p. 84. https://doi.org/10.1016/j.jfoodeng.2017.07.021

    Article  Google Scholar 

  12. Chen, G.Q., Qu, Y., Gras, S.L., et al., Separation technologies for whey protein fractionation, Food Eng. Rev., 2023, vol. 15, no. 1, p. 1. https://doi.org/10.1007/s12393-022-09330-2

    Article  Google Scholar 

  13. Paladii, I.V., Vrabie, E.G., Sprinchan, K.G., et al., Part 1: Classification, composition, properties, derivatives, and application, Surf. Eng. Appl. Electrochem., 2021, vol. 57, p. 579. https://doi.org/10.3103/S1068375521050112

    Article  Google Scholar 

  14. Batista, M.A., Campos, N.C. and Silvestre, M.P., Whey and protein derivatives: Applications in food products development, technological properties and functional effects on child health, Cogent Food Agric., 2018, vol. 4, p. 1. https://doi.org/10.1080/23311932.2018.1509687

    Article  Google Scholar 

  15. Hirsch, D.B., Martínez Álvarez, L.M., Urtasun, N., Baieli, M.F., et al., Lactoferrin purification and whey protein isolate recovery from cheese whey using chitosan mini-spheres, Int. Dairy J., 2020, vol. 109, p. 1. https://doi.org/10.1016/j.idairyj.2020.104764

    Article  Google Scholar 

  16. Faraji, N., Yan, Z. and Ajay, K.R., Optimization of lactoperoxidase and lactoferrin separation on an ion-exchange chromatography step, Separations, 2017, vol. 4, no. 2, p. 1. https://doi.org/10.3390/separations4020010

    Article  Google Scholar 

  17. Božanić, R., Barukčić, I., Jakopović, K.L. and Tratnik, L., Possibilities of whey utilization, Austin J. Nutr. Food Sci., 2014, vol. 2, no. 7, p. 1.

    Google Scholar 

  18. Naclerio, F., Alkhatib, A. and Jimenez, A., Effectiveness of whey protein supplement in resistance trained individuals, J. Sports Med. Doping Stud., 2013, vol. 3, no. 3, p. 1. https://doi.org/10.4172/2161-0673.1000130

    Article  Google Scholar 

  19. Lavoisier, A., Vilgis, T.A. and Aguilera, J.M., Effect of cysteine addition and heat treatment on the properties and microstructure of a calcium-induced whey protein cold-set gel, Curr. Res. Food Sci., 2019, vol. 1, p. 31. https://doi.org/10.1016/j.crfs.2019.10.001

    Article  Google Scholar 

  20. Verruck, S., Sartor, S., Marenda, F.B., et al., Influence of heat treatment and microfiltration on the milk proteins properties, Adv. Food. Technol. Nutr. Sci. Open J., 2019, vol. 5, no. 2, p. 54. https://doi.org/10.17140/AFTNSOJ-5-157

    Article  Google Scholar 

  21. Chavan, R.S., Shraddha, R.K., Kumar, A. and Nalawade, T., Whey based beverage: Its functionality, formulations, health benefits and applications, J. Food Process. Technol., 2015, vol. 6, no. 10, p. 1. https://doi.org/10.4172/2157-7110.1000495

    Article  Google Scholar 

  22. Papademas, P. and Paschalia K., Technological utilization of whey towards sustainable exploitation, J. Adv. Dairy Res., 2019, vol. 7, p. 1. https://doi.org/10.35248/2329-888X.19.7.231

    Article  Google Scholar 

  23. Lappa, I.K., Papadaki, A., Kachrimanidou, V., Terpou, A., et al., Cheese whey processing: Integrated biorefinery concepts and emerging food applications, Foods, 2019, vol. 8, no. 8, p. 1. https://doi.org/10.3390/foods8080347

    Article  Google Scholar 

  24. Barba, F.J., An integrated approach for the valorization of cheese whey, Foods, 2021, vol. 10, no. 3, p. 1. https://doi.org/10.3390/foods10030564

    Article  Google Scholar 

  25. Arab, S.A., Kaemipoor, M., Alkhaleel, R., and Mahdian, A., Recent trends in developing whey products by advanced technologies, Sch. Acad. J. Biosci., 2023, vol. 11, no. 2, p. 74. https://doi.org/10.36347/sajb.2023.v11i02.006

    Article  Google Scholar 

  26. Shinde, G., Kumar, R., Chauhan, S., et al., Whey proteins: A potential ingredient for food industry—a review, Asian J. Dairy Food Res., 2018 vol. 37, no. 4, p. 283. https://doi.org/10.18805/ajdfr.DR-1389

    Article  Google Scholar 

  27. Tsermoula, P., Khakimov, B., Nielsen, J.H., and Engelsen, S.B., Whey—the waste-stream that became more valuable than the food product, Trends Food Sci. Technol., 2021, vol. 118, p. 230. https://doi.org/10.1016/j.tifs.2021.08.025

    Article  Google Scholar 

  28. Nishanthi, M., Vasiljevic, T., and Chandrapala, J., Properties of whey proteins obtained from different whey streams, Int. Dairy J., 2017, vol. 66, p. 76. https://doi.org/10.1016/j.idairyj.2016.11.009

    Article  Google Scholar 

  29. Nishanthi, M., Chandrapala, J. and Vasiljevic, T., Compositional and structural properties of whey proteins of sweet, acid and salty whey concentrates and their respective spray dried powders, Int. Dairy J., 2017, vol. 74, p. 49. https://doi.org/10.1016/j.idairyj.2017.01.002

    Article  Google Scholar 

  30. Sima, K., Mir, M.S., Nina, E., and Parvin, D., Whey: Characteristics, applications and health aspects, Int. J. Adv. Biotechnol. Res. (IJBR), 2016, vol. 7, no. 2, p. 1383.

    Google Scholar 

  31. Guo, M., Human Milk Biochemistry and Infant Formula Manufacturing Technology, Cambridge: Elsevier, 2014. p. 397.

    Google Scholar 

  32. Paladii, I.V., Vrabie, E.G., Sprinchan, K.G., et al., Whey: Review. Part 2. Treatment processes and methods, Surf. Engin. Appl. Electrochem., 2021, vol. 57, p. 651. https://doi.org/10.3103/S1068375521060119

    Article  Google Scholar 

  33. Goyal, C., Dhyani, P., Rai, D.C., Tyagi, S., et al., Emerging trends and advancements in the processing of dairy whey for sustainable biorefining, J. Food Process. Preserv., 2023, vol. 2023, p. 1. https://doi.org/10.1155/2023/6626513

    Article  Google Scholar 

  34. Aslam, M., Khalid, A., Tahir, G., and Mukhtar, H., Recent developments in purification techniques for whey valorization, J. Biomed. Res. Environ. Sci., 2021, vol. 2, no. 9, p. 876. https://doi.org/10.37871/jbres1326

    Article  Google Scholar 

  35. Ramos O.L., Pereira R.N., Rodrigues R.M., Teixeira J.A., et al., Whey and whey powders: Production and uses, in The Encyclopedia of Food and Health, Caballero, B., Finglas, P., Toldrá, F., Eds., Oxford: Academic Press, 2016, vol. 5, p. 498.

    Google Scholar 

  36. Sprinchan E.G., Optimization of technological regimes for obtaining protein-mineral concentrated products from secondary milk raw materials, Surf. Eng. Appl. Electrochem., 2009, vol. 45, no. 1, p. 63.

    Article  Google Scholar 

  37. Bakhir, V.M., Electrochemical activation: The key to environmentally friendly water treatment technologies, Vodosnabzhenie i kanalizatsiya, 2012, nos. 1–2, p. 89.

  38. Kareb, O., Gomaa, A., Champagne, C., Jean, J., et al., Electro-activation of sweet defatted whey: Impact on the induced Maillard reaction products and bioactive peptides, Food Chem., 2017, vol. 221, p. 590. https://doi.org/10.1016/j.foodchem.2016.11.134

    Article  Google Scholar 

  39. Vrabie, E., Bologa, M., Paladii, I., Stepurina, T., et al., Electrical processing of whey. Role of construction, technological and energy characteristics of reactors, Surf. Eng. Appl. Electrochem., 2019, vol. 55, p. 197. https://doi.org/10.3103/S1068375519020145

    Article  Google Scholar 

  40. Ressler, N., Gahkoff, M. and Fischinger, A., Improved method for determining serum protein concentration in the far ultraviolet, Clin. Chem., 1976, vol. 22, no. 8, p. 1355.

    Article  Google Scholar 

  41. Vrabie, E., Bologa, M., Stepurina, T., Bologa, Al., et al., Peculiarities of the electric activation of whey, Surf. Eng. Appl. Electrochem., 2011, vol. 47, p. 66. ISSN 1068-3755.

Download references

Funding

The work was carried out within the framework of the project NARD 20.80009.5007.06 (2020–2023) “Intensification of Transfer and Processing Processes in Electric, Electromagnetic, Cavitation Fields; Practicality.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Paladii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paladii, I.V., Vrabie, E.G., Bologa, M.K. et al. Electroactivation: An Advanced Method of Processing of Whey with Medium Protein Content. Surf. Engin. Appl.Electrochem. 59, 824–835 (2023). https://doi.org/10.3103/S1068375523060145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375523060145

Keywords:

Navigation