Skip to main content
Log in

Evaluation of Li Electrodeposition into Al from LiCl–KCl Electrolyte

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This study investigated the effects of temperature and the current density on the production of an Al–Li master alloy using electrolysis. The current efficiency and the specific energy consumption were calculated according to Faraday’s law to determine optimal conditions for production of the Al–Li master alloy. Solid aluminum and graphite were used as the cathode and the anode, respectively. The LiCl–KCl eutectic molten salt was used as a lithium-containing electrolyte. Different current densities were applied to obtain the optimum condition. In addition, different temperatures were investigated at the optimum current density during the deposition of lithium. Scanning electron microscopy, optical microscopy, and the X-ray diffraction analysis were used to investigate the microstructure and phase compositions. Atomic absorption spectroscopy was used to measure the existing lithium. The results showed that electrolysis at 620°C and a current density of 0.9 A/cm2 at 4 V for 3 h leads to the formation of an Al–17.43 wt % Li master alloy. The current efficiency and the specific energy consumption for the optimum conditions were found to be 96% and 16.08 kWh/kg, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Gupta, R.K., Nayan, N., Nagasireesha, G., and Sharma, S.C., Mater. Sci. Eng., A, 2006, vol. 420, no. 1, pp. 228–234.

    Article  Google Scholar 

  2. Meng, L. and Zheng, X.L., Mater. Sci. Eng., A, 1997, vol. 237, no. 1, pp. 109–118.

    Article  Google Scholar 

  3. Lavernia, E.J. and Grant, N.J., J. Mater. Sci., 1987, vol. 22, no. 5, pp. 1521–1529.

    Article  Google Scholar 

  4. De Yan, Y., Tang, H., Zhang, M. L., Xue, Y., et al., Electrochim. Acta, 2012, vol. 59, pp. 531–537.

    Article  Google Scholar 

  5. Aluminum–Lithium Alloys: Processing, Properties, and Applications, Prasad, N.E., Gokhale, A., and Wanhill, R.J.H., Eds., London: Butterworth-Heinemann, 2013, pp. 13–23.

    Google Scholar 

  6. Itoh K., Tanabe Z., and Watanabe Y., US Patent 4 521 284, 1985.

  7. Zhang, M.L., De Yan, Y., Hou, Z.Y., Fan, L.A., et al., Chin. Chem. Lett., 2007, vol. 18, no. 3, pp. 329–332.

    Article  Google Scholar 

  8. Kamaludeen, M., Renganathan, N.G., Sundaram, M., and Vasu, K.I., Bull. Electrochem., 1987, vol. 3, no. 2, pp. 143–145.

    Google Scholar 

  9. Sato Y., Saito S., Araike E., Suzuki T., et al., J. Jpn. Inst. Light Met., 1993, vol. 43, no. 1, p. 33. https://doi.org/10.2464/jilm.43.33

    Article  Google Scholar 

  10. Ye, K., Zhang, M.L., Chen, Y., Han, W., et al., Metall. Mater. Trans. B, 2010, vol. 41, no. 3, pp. 691–698.

    Article  Google Scholar 

  11. Leisegang, T., Meutzner, F., Zschornak, M., Münchgesang, W., et al., Front. Chem., 2019, vol. 7, p. 268.

    Article  Google Scholar 

  12. Han, W., Chen, Q., Sun, Y., Jiang, T., et al., Metall. Mater. Trans. B, 2011, vol. 42, no. 6, pp. 1367–1375.

    Article  Google Scholar 

  13. Chen, X., Zhao, Z., Liu, X., Hao, M., et al., J. Power Sources, 2014, vol. 254, pp. 345–352.

    Article  Google Scholar 

  14. Lin, M.C., Uan, J.Y., and Tsai, T.C., Int. J. Hydrogen Energy, 2012, vol. 37, no. 18, pp. 13731–13736.

    Article  Google Scholar 

  15. Lynch, S.P., Mater. Sci. Eng., A, 1991, vol. 136, pp. 25–43.

    Article  Google Scholar 

  16. Lynch, S.P., Mater. Sci. Eng., A, 1991, vol. 136, pp. 45–57.

    Article  Google Scholar 

  17. Lynch, S.P., Wilson, A.R., and Byrnes, R.T., Mater. Sci. Eng., A, 1993, vol. 172, nos. 1–2, pp. 79–93.

    Article  Google Scholar 

  18. Lynch, S.P., Knight, S.P., Birbilis, N., and Muddle, B.C., in Proc. Int. Conf. on Aluminium Alloys (ICAA), Chichester: Wiley, 2008, pp. 1409–1415.

  19. Pasang, T., Symonds, N., Moutsos, S., Wanhill, R.J.H., et al., Eng. Failure Anal., 2012, vol. 22, pp. 166–178.

    Article  Google Scholar 

  20. Chen, X., Zhao, Z., Hao, M., and Wang, D., Int. J. Energy Res., 2013, vol. 37, no. 13, pp. 1624–1634.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Peter Jones, lecturer at Lappeenranta-Lahti University of Technology, Lappeenranta, Finland, for his precious comments.

Funding

The authors would like to express their sincere appreciation to the Ministry of Science, Research and Technology of Iran for the grant for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Bilesan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilesan, M.R., Soltanieh, M., Bafghi, M.S. et al. Evaluation of Li Electrodeposition into Al from LiCl–KCl Electrolyte. Surf. Engin. Appl.Electrochem. 56, 571–579 (2020). https://doi.org/10.3103/S1068375520050026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375520050026

Keywords:

Navigation