Skip to main content
Log in

On the possibility of using the Cahn–Hilliard model to describe electrodeposition of nanostructures

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The possibility of using the Cahn–Hilliard theory in the process of electrodeposition of nanostructures is studied. A correlation between the microscopic parameters included in the calculation formulas and the experimental kinetic coefficients is found. The theoretical results can explain the choice of the optimal parameters of electrochemical deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weston, D.P., Gill, S.P.A., Fay, M., Harris, S.J., et al., Surf. Coat. Technol., 2013, vol. 236, pp. 75–83.

    Article  Google Scholar 

  2. Weston, D.P., Harris, S.J., Shipway, P.H., Weston, N.J., et al., Electrochim. Acta, 2013, vol. 55, pp. 5695–5708.

    Article  Google Scholar 

  3. Gamburg, Yu.D. and Zangari, G., Theory and Practice of Metal Electrodeposition, New York: Springer-Verlag, 2011.

    Book  Google Scholar 

  4. Cahn, J.W. and Hilliard, D.J.E., J. Chem. Phys., 1958, vol. 28, no. 2, pp. 258–267.

    Article  Google Scholar 

  5. Cahn, J.W. and Hilliard, D.J.E., J. Chem. Phys., 1959, vol. 30, no. 5, pp. 1121–1124.

    Article  Google Scholar 

  6. Cahn, J.W. and Hilliard, D.J.E., J. Chem. Phys., 1959, vol. 30, no. 5, pp. 688–699.

    Article  Google Scholar 

  7. Cahn, J.W., Trans. Metall. Soc., 1968, vol. 242, pp. 166–170.

    Google Scholar 

  8. Cahn, J.W. and Larché, F.C., Acta Metall., 1982, vol. 30, pp. 51–56.

    Article  Google Scholar 

  9. Hillert, M., Metall Trans A. 1975, vol. 6, no. 1, pp. 5–19.

    Article  Google Scholar 

  10. Khachaturyan, A.G., Theory of Structural Transformations in Solids, New York: Wiley, 1983.

    Google Scholar 

  11. Landau, L.D. and Lifshits, E.M., K teorii dispersii magnitnoi pronitsaemosti ferromagnitnykh tel. Sobranie trudov (The Theory of Dispersion of the Magnetic Permeability of the Ferromagnetic Bodies: Collection of Research Works), Moscow: Nauka, 1969, vol. 1, pp. 128–143.

    Google Scholar 

  12. Vonsovskii, S.V., Magnetizm (Magnetism), Moscow: Nauka, 1971.

    Google Scholar 

  13. Brown, W.F., Jr., Micromagnetics, New York: Wiley, 1963.

    MATH  Google Scholar 

  14. Gibbs, J.W., The Collected Works of J. Willard Gibbs, Vol. 1: Thermodynamics, New York: Longmans and Green, 1928.

    Google Scholar 

  15. Volmer, M. and Weber, A., Z. Phys. Chem., 1926, vol. 119, pp. 277–239.

    Google Scholar 

  16. Erdey-Gruz T. and Volmer, M. Z. Phys. Chem., 1931, vol. 157, pp. 165–170.

    Google Scholar 

  17. Vetter, K.J., Electrochemical Kinetics, Theoretical Aspects, New York: Academic, 1967.

    Google Scholar 

  18. Becker, R. and Döring, W., Ann. Phys., 1935, vol. 24, pp. 719–730.

    Article  Google Scholar 

  19. Frenkel, Ja.I., J. Chem. Phys., 1939, vol. 7, pp. 200–201.

    Article  Google Scholar 

  20. Landau, L.D., Phys. Z. Sowjetunion, 1937, vol. 11, pp. 26–36.

    Google Scholar 

  21. Landau, L.D., Phys. Z. Sowjetunion, 1937, vol. 11, pp. 545–553.

    Google Scholar 

  22. Kolmogoroff, A.N., Bull. Akad. Sci. URSS. Cl. Sci. Math. Nat., 1937, pp. 355–359.

    Google Scholar 

  23. Zeldovich, J.B., Acta Physicochim. URSS, 1943, vol. 18, pp. 1–17.

    Google Scholar 

  24. Lifshits, I.M. and Slezov, V.V., J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–49.

    Article  Google Scholar 

  25. Belavin, A.A. and Polyakov, A.M., JETP Lett., 1975, vol. 22, pp. 245–248.

    Google Scholar 

  26. Woo, G., J. Math. Phys., 1977, vol. 18, pp. 1264–1266.

    Article  MathSciNet  Google Scholar 

  27. Baranov, S.A., Surf. Eng. Appl. Electrochem., 2011, vol. 47, no. 4, pp. 316–330.

    Article  Google Scholar 

  28. Baranov, S.A., Laroze, D., Vargas, P., and Vazquez, M., Phys. B, 2006, vol. 372, pp. 320–323.

    Article  Google Scholar 

  29. Baranov, S.A., Gamburg, Yu.D., and Dikusar, A.I., Surf. Eng. Appl. Electrochem., 2007, vol. 43, no. 3, pp. 172–175.

    Article  Google Scholar 

  30. Laroze, D., Baranov, S.A., Vargas, P., and Vazquez, M., Phys. Status Solidi C, 2007, vol. 4, no. 11, pp. 4170–4173.

    Article  Google Scholar 

  31. Baranov, S.A., Dikusar, A.I., and Gamburg, Yu.D., Surf. Eng. Appl. Electrochem., 2008, vol. 44, no. 2, pp. 98–105.

    Article  Google Scholar 

  32. Baranov, S.A., Mold. J. Phys. Sci., 2014, vol. 13, nos. 3–4, pp. 214–221.

    Google Scholar 

  33. Baranov, S.A., Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties and Characterization Techniques, Zurich: Springer-Verlag, 2015, pp. 1057–1069.

    Google Scholar 

  34. Abraham, F.F., Homogeneous Nucleation Theory, New York: Academic, 1974.

    Google Scholar 

  35. Martin, C.R., Science, 1994, vol. 266, pp. 1961–1966.

    Article  Google Scholar 

  36. Puri, S. and Binder, K., J. Stat. Phys., 1994, vol. 77, no. 1, pp. 145–172.

    Article  Google Scholar 

  37. Binder, K., Rep. Prog. Phys., 1987, vol. 50, pp. 783–859.

    Article  Google Scholar 

  38. Gunton, J.D. and Droz, M., Introduction to the Theory of Metastable and Unstable States, Lect. Not. Phys., New York: Springer-Verlag, 1983.

    Google Scholar 

  39. Penrose, O., J. Stat. Phys., 1997, vol. 89, pp. 305–320.

    Article  Google Scholar 

  40. Hill, T.L., Nano Lett., 2001, vol. 1, no. 3, pp. 111–112.

    Article  Google Scholar 

  41. Kaishev, R., Izbrani trudove (Collected Works), Sofia: Bolg. Akad. Nauk, 1980.

    Google Scholar 

  42. Kashchiev, D., Nucleation: Basic Theory with Applications, Oxford: Butterworth, 2000.

    Google Scholar 

  43. Roldugin, V.I., Fizikokhimiya poverkhnosti (Physical Chemistry of a Surface), Dolgoprudnyi: Intellekt, 2008.

    Google Scholar 

  44. Rekhviashvili, S.Sh., Kishtikova, E.V., and Rozenberg, B.A., Russ. J. Phys. Chem. B, 2009, vol. 3, no. 6, pp. 1008–1014.

    Article  Google Scholar 

  45. Rekhviashvili, S.Sh., Kishtikova, E.V., and Rozenberg B.A. Tech. Phys., 2009, vol. 54, no. 12, pp. 1731–1735.

    Article  Google Scholar 

  46. Rekhviashvili, S.Sh. and Kishtikova, E.V., Tech. Phys., 2011, vol. 56, no. 1, pp. 143–146.

    Article  Google Scholar 

  47. Ono, S. and Kondo, S., Molecular Theory of Surface Tension in Liquids, Berlin: Springer-Verlag, 1960.

    MATH  Google Scholar 

  48. Ma, S.-K., Modern Theory of Critical Phenomena, Benjamin, W.A., Ed., Massachusetts: Adv. Book Progr. Reading, 1976.

    Google Scholar 

  49. Fleury, P.A., Science, 1981, vol. 211, no. 4478, pp. 125–131.

    Article  MathSciNet  Google Scholar 

  50. Hubert, A., Theorie der Domänenwände in geordneten Medien (Theory of Domain Walls in Ordered Media), Berlin: Springer-Verlag, 1974.

    Google Scholar 

  51. Kittel, C., Introduction to Solid State Physics, New York: Wiley, 1963.

    MATH  Google Scholar 

  52. Katsnel’son, A.A. and Olemskoi, A.I., Mikroskopicheskaya teoriya neodnorodnykh struktur (Microscopic Theory of Heterogenic Structures), Moscow: Mosk. Gos. Univ., 1987.

    Google Scholar 

  53. Shirokobokov, M.Ya., Zh. Eksp. Teor. Fiz., 1945, vol. 15, pp. 57–68.

    Google Scholar 

  54. Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika. Tom 8. Elektrodinamika sploshnykh sred (Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media), Moscow: Nauka, 1982.

    Google Scholar 

  55. Kosevich, A.M., Ivanov, B.A., and Kovalev, A.S., Nelineinye volny namagnichennosti. Dinamicheskie i topologicheskie solitony (Nonlinear Wave Magnetization. Dynamics and Topological Solitons), Kiev: Naukova Dumka, 1983.

    Google Scholar 

  56. Malozemoff, A.P. and Slonczewski, J.C., Magnetic Domain Walls in Bubble Materials, New York: Academic, 1979.

    Google Scholar 

  57. Ivanov, D.Yu., Critical phenomena in pure liquids, Vestn. Sib. Gos. Univ. Telekomm., 2009, vol. 3, pp. 94–104.

    Google Scholar 

  58. Anisimov, M.A., Critical Phenomena in Liquids and Crystals, Philadelphia: Gordon and Breach, 1991.

    Google Scholar 

  59. Feynman, R.P., Leighton, R.B., and Sands, M., The Feynman Lectures on Physics, Pasadena, CA: Calif. Inst. Technol., 1963, vol. 1.

    MATH  Google Scholar 

  60. Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika. Tom 3. Kvantovaya mekhanika, nerelyativistskaya teoriya (Theoretical Physics, Vol. 3: Quantum Mechanics and Nonrelativistic Theory), Moscow: Nauka, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Baranov.

Additional information

Original Russian Text © S.A. Baranov, 2017, published in Elektronnaya Obrabotka Materialov, 2017, No. 2, pp. 14–27.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, S.A. On the possibility of using the Cahn–Hilliard model to describe electrodeposition of nanostructures. Surf. Engin. Appl.Electrochem. 53, 124–136 (2017). https://doi.org/10.3103/S1068375517020028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375517020028

Keywords

Navigation