Skip to main content
Log in

Influence of Thermohaline Stratification on the Evolution of Coastal Upwelling on the Northeastern Shelf of Sakhalin

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Satellite data on sea surface temperature and temperature and salinity profiles in the northeastern shelf of Sakhalin showed that during the periods of advection of warm and low-salinity water to the eastern shelf of Sakhalin, intensive coastal upwelling did not develop, even under favorable wind conditions. Regular deepening of the thermocline/halocline has prevented the rise of cold and salt water to the sea surface. Numerical experiments with the INMOM-JRA55-do model showed a significant deepening of the thermocline/halocline accompanied by the increasing density stratification, which prevented the elevating of the Sea of Okhotsk water to the sea surface. It is assumed that the joint monitoring of wind conditions and hydrology on the eastern shelf of Sakhalin in the second half of the year will significantly clarify the features of its development and more accurately assess the biological productivity of water in this area of the Sea of Okhotsk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. N. A. Diansky, Ocean Circulation Modeling and Investigation of Ocean Response to Short- and Long-period Atmospheric Forcing (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  2. N. A. Diansky, D. V. Stepanov, V. V. Fomin, and M. M. Chumakov, “Water Circulation off the Northeastern Coast of Sakhalin during the Passage of Three Types of Deep Cyclones over the Sea of Okhotsk,” Meteorol. Gidrol., No. 1 (2020) [Russ. Meteorol. Hydrol., No. 1, 45 (2020)].

    Article  Google Scholar 

  3. I. A. Zhabin and E. V. Dmitrieva, “Seasonal and Interannual Variability of Wind-induced Upwelling off the Eastern Coast of Sakhalin According to the QuikSCAT SeaWinds Scatterometer,” Issledovanie Zemli iz Kosmosa, No. 1–2 (2016) [in Russian].

  4. I. E. Kochergin, S. I. Rybalko, V. F. Putov, and G. V. Shevchenko, “Some Results of Processing Instrumental Observations of Currents in the Pil’tun-Astokhskaya and Arkutun-Daginskaya Areas of the Northeastern Shelf of Sakhalin,” in Hydrometeorological and Ecological Conditions of Far Eastern Seas: Assessment of Marine Environment Impacts, Issue 2 (Vladivostok, 1999) [in Russian].

  5. V. A. Levin, A. I. Aleksanin, M. G. Aleksanina, P. V. Babyak, A. A. Zagumennov, A. S. Eremenko, V. S. Eremenko, S. E. D’yakov, S. N. Katamanov, V. Kim, I. V. Nedoluzhko, E. V. Fomin, and V. A. Kachur, “Ocean Surface Monitoring Technologies of FEB RAS Satellite Center,” Zemlya iz Kosmosa, No. 8 (2017) [in Russian].

  6. V. M. Pishchal’nik, V. S. Arkhipkin, and A. V. Leonov, “Reconstruction of the Annual Variations of Thermohaline Characteristics and Water Circulation on the Northeastern Sakhalin Shelf,” Vodnye Resursy, No. 4, 41 (2014) [Water Resour., No. 4, 41 (2014)].

    Article  Google Scholar 

  7. A. N. Rutenko and V. A. Sosnin, “Hydrodynamic Processes on the Sakhalin Shelf in the Coastal Piltun Area of the Grey Whale Feeding and Their Correlation with Atmospheric Circulation,” Meteorol. Gidrol., No. 5 (2014) [Russ. Meteorol. Hydrol., No. 5, 39 (2014)].

    Article  Google Scholar 

  8. A. N. Rutenko, F. F. Khrapchenkov, and V. A. Sosnin, “Near-shore Upwelling on the Sakhalin Shelf,” Meteorol. Gidrol., No. 2 (2009) [Russ. Meteorol. Hydrol., No. 2, 34 (2009)].

    Article  Google Scholar 

  9. V. A. Ryabchenko, N. A. Diansky, A. V. Gusev, A. G. Arkhipov, and P. P. Chernyshkov, “Model Estimates of the Influence of Interannual Changes in Ocean Circulation on the Distribution of Commercial Fish Larvae in the Canary Upwelling Region,” Fundamental’naya i Prikladnaya Gidrofizika, No. 4, 6 (2013) [in Russian].

  10. E. K. Semenov, N. N. Sokolikhina, E. V. Tatarinovich, and K. O. Tudrii, “Synoptic Conditions of the Formation of a Catastrophic Flood on the Amur River in 2013,” Meteorol. Gidrol., No. 8 (2014) [Russ. Meteorol. Hydrol., No. 8, 39 (2014)].

    Article  Google Scholar 

  11. G. V. Shevchenko and O. V. Kusailo, “Analysis of Currents near the Sakhalin Southeastern Coast from Instrumental Measurements,” Meteorol. Gidrol., No. 10 (2007) [Russ. Meteorol. Hydrol., No. 10, 32 (2007)].

    Article  Google Scholar 

  12. Y. S. Androulidakis, Y. N. Krestenitis, and S. Psarra, “Coastal Upwelling over the North Aegean Sea: Observations and Simulations,” Cont. Shelf Res., 149 (2017).

    Article  Google Scholar 

  13. R. Atlas, R. N. Hoffman, S. C. Bloom, J. Jusem, and J. Ardizzone, “A Multiyear Global Surface Wind Velocity Dataset Using SSM/I Wind Observations,” Bull. Amer. Meteorol. Soc., 77 (1996).

    Article  Google Scholar 

  14. J. A. Cummings, “Operational Multivariate Ocean Data Assimilation,” Quart. J. Roy. Meteorol. Soc., 131 (2005).

    Article  Google Scholar 

  15. C. J. Donlon, K. S. Casey, I. S. Robinson, C. L. Gentemann, R. W. Reynolds, I. Barton, O. Arino, J. Stark, N. Rayner, P. LeBorgne, D. Poulter, J. Vazquez-Cuervo, E. Armstrong, H. Beggs, D. Llewellyn-Jones, P. J. Minnett, C. J. Merchant, and R. Evans, “The Godae High-resolution Sea Surface Temperature Pilot Project,” Oceanogr., 22 (2009).

    Article  Google Scholar 

  16. C. Hu, Z. Lee, and B. Franz, “Chlorophyll a Algorithms for Oligotrophic Oceans: A Novel Approach Based on Three-band Reflectance Difference,” J. Geophys. Res. Oceans, 117 (2012).

    Article  Google Scholar 

  17. J. O’Reilly, S. Maritorena, M. C. O’Brien, et al., SeaWiFS Postlaunch Calibration and Validation Analyses, NASA Tech. Memo. 2000-206892, Vol. 11, Part 3, Ed. by S. B. Hooker and E. R. Firestone (NASA Goddard Space Flight Center, 2000).

  18. Y. Shu, D. Wang, M. Feng, B. X. Geng, J. Chen, J. L. Yao, Q. Xie, and Q. Y. Liu, “The Contribution of Local Wind and Ocean Circulation to the Interannual Variability in Coastal Upwelling Intensity in the Northern South China Sea,” J. Geophys. Res., 123 (2018).

    Article  Google Scholar 

  19. D. V. Stepanov, N. A. Diansky, and V. V. Fomin, “Eddy Energy Sources and Mesoscale Eddies in the Sea of Okhotsk,” Ocean Dynamics, 68 (2018).

    Article  Google Scholar 

  20. H. Tsujino, S. Urakawa, H. Nakano, R. Small, W. M. Kim, S. Yeager, G. Danabasoglu, T. Suzuki, J. Bamber, M. Bentsen, C. Boning, A. Bozec, E. Chassignet, E. Curchitser, F. B. Dias, P. Durack, S. Griffies, Y. Harada, M. Ilicak, S. Josey, C. Kobayashi, S. Kobayashi, Y. Komuro, W. Large, J. Sommer, S. Marsland, S. Masina, M. Scheinert, H. Tomita, M. Valdivieso, and D. Yamazaki, “JRA-55 Based Surface Dataset for Driving Ocean–Sea-ice Models (JRA55-do),” Ocean Model., 130 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Fershalov.

Additional information

Translated from Meteorologiya i Gidrologiya, 2022, No. 9, pp. 20-31. https://doi.org/10.52002/0130-2906-2022-9-20-31.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fershalov, M.Y., Stepanov, D.V., Shtraikhert, E.A. et al. Influence of Thermohaline Stratification on the Evolution of Coastal Upwelling on the Northeastern Shelf of Sakhalin. Russ. Meteorol. Hydrol. 47, 652–659 (2022). https://doi.org/10.3103/S1068373922090023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373922090023

Keywords

Navigation