Skip to main content
Log in

The role of athermal mechanisms in the activation of tribodesorption and triboluminisence in miniature and lightly loaded friction units

  • Published:
Journal of Friction and Wear Aims and scope Submit manuscript

Abstract

Analysis of how the size of the tribocontact influences temperature rise in the contact zone has revealed that the maximum temperature rise in tribocontact with micro- and nanodimensions does not exceed 10 K. As the contact zone shrinks, each surface point is in contact for a shorter time so that the thermal activation leaves various friction-induced processes in the contact zone more or less unaffected. Thus, there should be athermal processes of activation of tribostimulated phenomena. The athermal mechanisms are considered that are likely to activate tribodesorption of gases and triboluminscence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buyanosvskii, I.A., Fuks, I.G., and Bogdasarov, L.N., Ocherki po istorii tribologii (Sketches of Tribology History), Moscow: Neft’ i Gaz, 1998.

    Google Scholar 

  2. Bowden, F.P., and Tabor, D., Trenie i smazka tverdykh tel (Friction and Lubrication of Solids), Moscow: Mashinostroenie, 1968.

    Google Scholar 

  3. Walton, A.J., Triboluminescence, Advances in Physics, 1977, 26, no. 6, pp. 887–948.

    Article  ADS  Google Scholar 

  4. Evdokimov, V.D. and Semov, Yu.I., Ekzoelektronnaya emssiya pri trenii (Exoelectron Emission in Friction), Moscow: Nauka, 1973.

    Google Scholar 

  5. Deulin, E.A. and Peresad’ko, A.G., Diagnostika i prognozirovanie otkaza vysokovakuumnykh mekhanizmov (Diagnostics and Prediction of Failure of High-Vacuum Mechanisms), Kontrol’. Diagnostika, 1998, no. 5, pp. 21–28.

  6. Pogodaev, L.I. and Kuz’min, V.I., Strukturno-energeticheskie modeli nadezhnosti materialov i detalei mashin (Structural Energy Models of Reliability of Materials and Machine Parts), Saint-Petersburg: Akad. Transp. RF, 2005.

    Google Scholar 

  7. Heinike, G., Tribokhimiya (Tribochemistry), Moscow: Mir, 1978.

    Google Scholar 

  8. Kragel’skii, I.V., Lyubarskii, I.M., and Guslyakov, A.A., Trenie i iznnos v vakuume (Friction and Wear in the Vacuum), Moscow: Mashinostroenie, 1973.

    Google Scholar 

  9. Bulgarevich, S.B., Kontaktnoe vziamodeystvie i sukhoe trenie (Contact Interaction and Dry Friction), Moscow: Mosk. Gos. Tekh. Inst. N.E. Baumana, 2005, pp. 60–67.

    Google Scholar 

  10. Butyagin, P.Yu., Problemy i perspektivy mekhanokhimii (Problems and Prospects of Mechanochemistry), Usp. Khim., 1994, vol. 63, pp. 1031–1043.

    Google Scholar 

  11. Varentsov, E.A. and Khrustalev, Yu.A., Mekhanoemissiya i mekhanokhmiya molekulyarnykh organicheskykh kristallov (Mechanoemission and Mechanochemistry of Molecular Organic Crystals), Usp. Khim., 1995, vol. 64, pp. 834–839.

    Google Scholar 

  12. Poverkhostnaya prochnost’ materialov pri trenii (Surface Strength of Materials in Friction), Ed. B.I. Kostetskii, Kiev: Tekhnika, 1976.

    Google Scholar 

  13. Nevshupa, R.A., Triboemission: an Attempt of Developing a Generalized Classification, Proc. Conf. “Tribology: Science and Applications”, Vienna: PAS, 2003, p. 14.

    Google Scholar 

  14. Dickinson, J.T., Langford, S.C., and Jensen, L.C., Fractoemission from Fused Silica and Sodium Silicate Glasses, J. Vac. Sci. Technol. Ser. A, 1988, vol. 6, pp. 1084–1089.

    Article  ADS  Google Scholar 

  15. Gutman, E.M., Mekhanokhimiya metallov i zashchita ot korrozii (Mechanochemistry of Metals and Protection from Corrosion), Moscow: Metallurgiya, 1974.

    Google Scholar 

  16. Fox, P.G. and Soria-Ruiz, J., Fracture-induced thermal decomposition in brittle crystalline solids, Proc. Royal Soc., 1970, vol. 317, pp. 79–80.

    Article  ADS  Google Scholar 

  17. Dickinson, J.T., Jensen, L.C., Langford, S.C., and Rosenberg, P.E., Fracture-Induced Emission of Alkali Atoms from Feldspar, Phys. Chem. Min., 1992, vol. 18, pp. 453–459.

    Article  ADS  Google Scholar 

  18. Dickinson, J.T., Jensen, L.C., and Langford, S.C., Atomic and Molecular Emission Accompanying Fracture of Single-Crystal Ge: a Dislocation Driven Process, Phys. Rev. Lett., 1991, vol. 66, pp. 2120–2123.

    Article  ADS  Google Scholar 

  19. Dickinson, J.T., Jensen, L.C., Langford, S.C., and Dion, R.P., Temperature Measurements of the Gaseous Emission During the Fracture of Polystyrene: a Determination of the Fracture Energy and Fracture Surface Temperature, J. Polymer Sci. Ser. B., 1994, vol. 32), pp. 779–782.

    Google Scholar 

  20. Dickinson, J.T., Jensen, L.C., and Dion, R.P., Fractoemission from High-Density Polyethylene: Bond Breaking Versus Tribological Stimulation, J. Appl. Phys., 1993, vol. 73, pp. 3047–3054.

    Article  ADS  Google Scholar 

  21. Kim, M.-W., Langford, S.C., and Dickinson, J.T., Emission of Neutral Mg from Single Crystal MgO During Abrasion with Diamond, J. Appl. Phys., 2003, vol. 93, pp. 1819–1825.

    Article  ADS  Google Scholar 

  22. Dickinson, J.T., Jensen, L.C., Langford, S.C., and Hirth, J.P., Atomic and Molecular Emission Following Fracture of Alkali Halides: a Dislocation Driven Process, J. Mat. Res., 1991, vol. 6, pp. 112–125.

    Article  ADS  Google Scholar 

  23. Dickinson, J.T., Jensen, L.C., Langford, S.C., Rosenberg, P.E., and Blanchard, D.L., CO2 Emission Accompanying the Fracture of Calcite, Physics and Chemistry of Minerals, 1991, vol. 18, pp. 320–325.

    Article  ADS  Google Scholar 

  24. Urakaev, F.Kh., Pozdnyakov, O.F., Boldyrev, V.V., and Savintsev, Yu.P., Kinetika i mekhanizm vydeleniya letuchiikh produktov pri raskalyvanii monokristallov neorganicheskykh soedinei (Kinetics and Mechanism of Release of Volatile Products when Monocrystals of Inorganic Compounds Crack), Kinetika i Kataliz, 1978, vol. 19, no. 6, pp. 1442–1447.

    Google Scholar 

  25. Urakaev, F.Kh. and Boldyrev, V.V., Korrelyatsiya vykhoda letuchikh produktov s parametrami rasprostraneniya khrupkoi treshchiny v kristallakh (Correlation of Release of Volatile Products with the Parameters of Brittle Crack Propagation in Crystals), Zh. Fiz. Khim., 2000, vol. 74, no. 8, pp. 1483–1488.

    Google Scholar 

  26. Urakaev F.Kh., Mechanodestruction of Minerals at the Crack Tip (Overview): 1. Experiment, Physics and Chemistry of Minerals, 2007, vol. 34, pp. 351–361.

    Article  ADS  Google Scholar 

  27. Frisch, B. and Thiele, W.-R., The Tribologically Induced Effect of Hydrogen Effusion and Penetration in Steels, Wear, 1984, vol. 95, pp. 213–227.

    Article  Google Scholar 

  28. Ikoma, T., Zhang, Q., Saito, F., et al., Radicals in the Mechanochemical Dechlorination of Hazardous Organochlorine Compounds Using CaO Nanoparticles, Bull. Chem. Soc. of Japan, 2001, vol. 74, pp. 2303–2309.

    Article  Google Scholar 

  29. Louthan, M.R., Jr., Caskey, G.R., Donovan, J.A., and Rawl, D.E., Jr., Hydrogen Embitterment of Metals, Material Science and Engineering, 1972, vol. 10, pp. 357–368.

    Article  Google Scholar 

  30. Nakayama, K., Nevshupa, R.A., Plasma Generation in a Gap Around a Sliding Contact, J. Phys. Ser. D: Appl. Phys., 2002, vol. 35, L53.

    Article  ADS  Google Scholar 

  31. Nevshupa, R.A., Scherge, M., and Ahmed, S.I.-U., Transitional Microfriction Behavior of Silicon Induced by Spontaneous Water Adsorption, Surface Science, 2002, vol. 517, pp. 17–28.

    Article  ADS  Google Scholar 

  32. Tian, X. and Kennedy, F.E., Jr., Maximum and Average Flash Temperatures in Sliding Contacts, ASME Journal of Tribology, 1994, vol. 116, pp. 167–174.

    Article  Google Scholar 

  33. Chichinadze, A.V., Raschet i issledovanie vneshnego treniya pri tormozhenii (Calculation and Investigation of External Friction in Braking), Moscow: Nauka, 1967.

    Google Scholar 

  34. Groszkowski, J., Gas Desorption at Rubbing Surfaces in High Vacua, Bulletin de l’Academie Polonaise des Sciences, 1961, vol. IX, no. 2, pp. 111–112.

    Google Scholar 

  35. Řepa, P. and Rott, M., Outgassing of Metals Stimulated by Friction, Vacuum, 1997, vol. 48, pp. 775–778.

    Article  Google Scholar 

  36. Řepa, P., Mechanically Induced Desorption, Vacuum, 1992, vol. 43, pp. 367–371.

    Article  Google Scholar 

  37. Kuzhman, A.G., Chernyshova, E.Yu., and Shapkin, E.V., Issledovanie friktsionnykh kharakteristik tverdosmazochnogo pokrytiya VNII NP 220 v atmosfere i vakuume (Study of the Friction Characteristics of the Solid Greasing Coating VNII NP 220 in the Air and in the Vacuum), Tr. Mosk. In-ta Elektr. i Mat., 1974, vol. 42, pp. 110–124.

    Google Scholar 

  38. Mori, S., Kawada, T., and Xu, W.C., Tribochemical Decomposition of Formic Acid on the Nascent Surfaces of Steel Formed by Scratching, Appl. Surf. Sci., 1997, vol. 108, pp. 391–397.

    Article  ADS  Google Scholar 

  39. Nevshupa, R., de Segovia, J.L., and Roman, E., Surface-Induced Reactions of Absorbed Hydrogen Under Mutual Mechanical Forces, Vacuum, 2005, vol. 80, pp. 241–246.

    Article  Google Scholar 

  40. Peressadko, A.G., Nevshupa, R.A., and Deulin, E.A., Mechanically Stimulated Outgassing from Ball Bearings in Vacuum, Vacuum, 2002, vol. 64, no. 3–4, pp. 273–278.

    Google Scholar 

  41. Nevshupa, R.A., de Segovia, J.L., and Deulin, E.A. Outgassing of Stainless Steel During Sliding Friction in Ultra High Vacuum, Vacuum, 1999, vol. 53, pp. 295–298.

    Article  Google Scholar 

  42. Deulin, E.A. and Nevshupa, R.A., Deuterium Penetration into the Bulk of a Ball Bearing due to its Rotation in Vacuum, Applied Surface Science, 1999, vol. 144–145, pp. 283–286.

    Article  Google Scholar 

  43. Deulin, E.A., Goncharov, S.A., de Segovia, J.L., and Nevshupa, R.A., Mechanically Stimulated Solution of Adsorbed Hydrogen and Deuterium in Steel, Surface and Interfacial Analysis, 2000, vol. 30, pp. 635–637.

    Article  Google Scholar 

  44. Fujii, J. and Ishimaru, H., Desorption from Ball Bearing in Ultra High Vacuum, J. Vac. Sci. Technol., 1991, vol. A9, pp. 2017–2020.

    ADS  Google Scholar 

  45. Řepa, P. and Orálek, D., Outgassing Stimulated by Deformation, Vacuum, 1999, vol. 53, pp. 299–302.

    Article  Google Scholar 

  46. Dushman, S., Nauchnye printsipy vakuumnoy tekhniki (Scientific Principles of Vacuum Technology), Moscow: Mir, 1964.

    Google Scholar 

  47. Thomas, L.C., Heat Transfer, Tulsa: Capstone Publishing Corp., 1999.

    Google Scholar 

  48. Tuzi, Y., Kurokawa, Y., and Takeuchi, K., Effect of Bake-Out on the Adsorption Kinetics of Gases in a Vacuum Chamber, Vacuum, 1993, vol. 44, pp. 447–449.

    Article  Google Scholar 

  49. Moraw, M. and Prasol, H., Gas Desorption from a Stainless Steel Surface in Ultra-High Vacuum Devices, Vacuum, 2003, vol. 71, pp. 471–479.

    Article  Google Scholar 

  50. Chun, I., Cho, B., and Chung, S., Outgassing Characteristics of a Stainless Steel Extreme High Vacuum System, J. Vac. Sci. Technol., 1996, vol. A14, no. 4, pp. 2636–2640.

    ADS  Google Scholar 

  51. Peksa, L., Gronych, T., and Řepa, P., An Attempt to Determine the Activation Energy of Desorption from the Shape of the Pressure Pulse in an UHV System Caused by LID, Vacuum, 1994, vol. 45, pp. 849–851.

    Article  Google Scholar 

  52. Derjaguin, B.V. and Krotova, N.A., Elektricheskaya teoriya adgezii plenok k tverdym poverkhostyam i ee eksperimental’noe obosnovanie (The Electrical Theory of Adhesion of Films to Solid Surfaces and its Experimental Justification), Usp. Fiz. Nauk, 1948, vol. 36, pp. 387–406.

    Google Scholar 

  53. Nakayama, K. and Nevshupa, R.A., Effect of Dry Air Pressure on Characteristics and Pattern of Tribomicroplasma, Vacuum, 2004, vol. 74, no. 1–3, pp. 11–17.

    Article  Google Scholar 

  54. Nevshupa, R.A. and Nakayama, K., Energy Effect of Microtriboplasma, Proc. Heraues Seminar “Integrating Friction and Wear Researches”, Ilmenau, 2003, pp. 24–25.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Nevshupa.

Additional information

Original Russian Text © R.A. Nevshupa, 2009, published in Trenie i Iznos, 2009, Vol. 30, No. 2, pp. 163–173.

About this article

Cite this article

Nevshupa, R.A. The role of athermal mechanisms in the activation of tribodesorption and triboluminisence in miniature and lightly loaded friction units. J. Frict. Wear 30, 118–126 (2009). https://doi.org/10.3103/S1068366609020081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068366609020081

Key words

Navigation