Skip to main content
Log in

Fabrication and Investigation of Photovoltaic Converters Based on Polycrystalline Silicon Grown on Borosilicate Glass

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The microcrystalline Si layers with grain sizes of up to several tens of micrometers were grown. The physical vapor deposition (PVD), amorphous–liquid–crystalline (ALC) transition technique and a steady-state liquid phase epitaxy (SSLPE) are used for the fabrication of three different samples. The first sample under consideration was prepared first by deposition of a-Si onto glass substrates by PVD at room temperature, followed by heating from the front side to ~300°C and deposition of an indium metallic solvent. At the preparation of the second sample, an additional silicon layer with the thickness of 400 nm was deposited. A sample, when after that a c-Si was grown on the seed layer by SSLPE from indium solution is referred as a third sample. The resulting samples have a strong absorption edge in the mid-infrared region around 1960 cm−1. Six well-resolved oscillations with an average period of δB = 0.1214 T are revealed on the third sample’s magnetoresistance curve at gradually increasing of the magnetic field from zero up to 1.6 T. It is assumed that either Aharonov–Bohm effect or kinetic phenomena taking place in the grains boundaries at lateral current flow are responsible for those oscillations. Quantitative evaluations show that due to the strong absorption in mid-infrared region, enlargement of the photoresponse spectrum will occur and the efficiency of solar and other thermal energy conversion should be around ~10–15% higher than that of traditional PV cells based on silicon on glass structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wedlock, B.D., Proceedings of IEEE, 1963, Vol. 51, p. 694.

    Article  Google Scholar 

  2. Wanlass, M.V., Ward, J.S., Emery, K.A., Al-Jassin, M.M., Jones, K.M., and Coutts, N.J., Solar Energy Materials and Solar Cells, 1996, vol. 41/42, p. 405.

    Google Scholar 

  3. Gevorkyan, V.A., Aroutiounian, V.M., Gambaryan, K.M., Kazaryan, M.S., Touryan, K.J., and Wanlass, M.W., Thin Solid Films, 2004, vol. 451–452, p. 124.

    Google Scholar 

  4. Carnel, L., Gordon, I., Van Gestel, D., Beaucarne, G., and Poortmans, J., Thin Solid Films, 2008, Vol. 16, p. 6839.

    Article  ADS  Google Scholar 

  5. Green, M.A., Appl. Phys. A, 2009, Vol. 96, p. 153.

    Article  ADS  Google Scholar 

  6. Gawlik, A., Plentz, J., Hoger, I., Andra, G., Schmidt, T., Bruckner, U., and Falk, F., Phys. Stat. Solidi (a), 2015, Vol. 212, p. 162.

    Article  ADS  Google Scholar 

  7. Amkreutz, D., Haschke, J., Haring, T., Ruske, F., and Rech, B., Solar Energy Materials and Solar Cells, 2014, Vol. 123, p. 13.

    Article  Google Scholar 

  8. Bansen, R., Ehlers, C., Teubner, T., Böttcher, K., Gambaryan, K., Schmidtbauer, J., and Boeck, T., J. Photonics for Energy, 2016, Vol. 6, p. 025501.

    Article  ADS  Google Scholar 

  9. Beaucarne, G., Duerinckx, F., Kuzma, I., Van Nieuwenhuysen, K., Kim, H., and Poortmans, J., Thin Solid Films, 2006, vol. 511–512, p. 533.

    Google Scholar 

  10. Capper, P. and Mauk, M., Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials, Chichester, UK: Wiley, 2007.

    Book  Google Scholar 

  11. Shi, Z., J. Mater. Sci. Electron., 1994, Vol. 5, p. 305.

    Article  Google Scholar 

  12. Silier, I., Gutjahr, A., Banhart, F., Konuma, M., Bauser, E., Schollkopf, V., and Frey, H., Mater. Lett., 1996, Vol. 28, p. 87.

    Article  Google Scholar 

  13. Bansen, R., Heimburger, R., Schmidtbauer, J., Teubner, T., Markurt, T., Ehlers, C., and Boeck, T., Appl. Phys. A, 2015, Vol. 119, p. 1577.

    Article  ADS  Google Scholar 

  14. Heimburger, R., Desmann, N., Teubner, T., Schramm, H.-P., Boeck, T., and Fornari, R., Thin Solid Films, 2012, Vol. 520, p. 1784.

    Article  ADS  Google Scholar 

  15. Yu, L. and Cabarrocas, P.R.I., Phys. Rev. B, 2010, Vol. 81, p. 085323.

    Article  ADS  Google Scholar 

  16. Wagner, R.S., and Ellis, W.C., Applied Physics Letters, 1964, Vol. 4, p. 89.

    Article  ADS  Google Scholar 

  17. Aharonov, Y. and Bohm, D., Phys. Rev., 1959, Vol. 115, p. 485.

    Article  ADS  MathSciNet  Google Scholar 

  18. Gambaryan, K.M., Harutyunyan, V.G., Aroutiounian, V.M., Ai, Y., Ashalley, E., and Wang, Z.M., J. Physics D: Applied Physics, 2015, Vol. 48, p. 275302.

    Article  Google Scholar 

  19. Gambaryan, K.M., Aroutiounian, V.M., Harutyunyan, V.G., and Yeranyan, L.S., J. Physics: IOP Conf. Series, 2017, Vol. 829, p. 012021.

    Google Scholar 

  20. Fomin, V.M., Physics of Quantum Rings, Berlin: Springer, 2014.

    Book  MATH  Google Scholar 

  21. Harutyunyan, V.G., Gambaryan, K.M., Aroutiounian, V.M., and Harutyunyan, I.G., Infrared Physics & Technology, 2015, Vol. 70, p. 12.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Gambaryan.

Additional information

Original Russian Text © K.M. Gambaryan, V.G. Harutyunyan, V.M. Aroutiounian, T. Boeck, R. Bansen, C. Ehlers, 2018, published in Izvestiya Natsional'noi Akademii Nauk Armenii, Fizika, 2018, Vol. 53, No. 4, pp. 468–476.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gambaryan, K.M., Harutyunyan, V.G., Aroutiounian, V.M. et al. Fabrication and Investigation of Photovoltaic Converters Based on Polycrystalline Silicon Grown on Borosilicate Glass. J. Contemp. Phys. 53, 351–357 (2018). https://doi.org/10.3103/S1068337218040102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337218040102

Keywords

Navigation