Skip to main content
Log in

Phase transition of nano-sized amorphous tungsten to a crystalline state

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

We study thermal-physical characteristics of nano-sized amorphous tungsten and of its oxide. It is shown that a nano-size amorphous metal gets into a nano-size crystalline state after heating up to temperatures much lower than the half-temperature of melting, which is typical for all nano-size amorphous materials. Phase transition of amorphous nano-size WO2 into crystalline state occurs in the temperature range 350–520°C, while the same transition in case of W takes place in the range 1000–1370°C. The energy released at crystallization of nano-size amorphous metal amounts to 170±25 J/g coinciding practically with the value of specific melting heat of usual tungsten. Such a high additional energy of nano-size amorphous metals above the energy of nano-size crystalline metals is their main peculiarity which widens essentially the range of their practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malkhasyan, R.T., Zhurkin, E.S., and Tunitskii, N.N., Khimiya vysokikh energiy, 1977, vol. 11, p. 400.

    Google Scholar 

  2. Malkhasyan, R.T., Movsesyan, G.L., and Potapov, V.K., Khimiya vysokikh energiy, 1992, vol. 26, p. 8.

    Google Scholar 

  3. Amorfnye metallicheskie splavy (Amorphous Metallic Alloys), Lyuborskii, F.E., ed., Moscow: Metallurgiya, 1983.

    Google Scholar 

  4. Suzuki, K., Fujimori, H., and Hashimoto, K., Amorfnye metally (Amorphous Metals), Moscow: Metallurgiya, 1987.

    Google Scholar 

  5. Malkhasyan, R.T., Method of direct reduction of oxides and obtaining of amorphous metals, Patent of RF, no. 4906334/02/109161 (1990).

    Google Scholar 

  6. Malkhasyan, R.T., Agababyan, E.V., and Karakhanyan, R.K., Khimicheskaya fizika, 1996, vol. 30, no. 3, p. 3.

    Google Scholar 

  7. Malkhasyan, R.T. and Grigoryan, S.L., New mechanism and kinetics of nanoamorphous metals synthesis process, Innovative Processing Ceramics, Glasses, Composite II, USA, Ohayo Ceramic Transactions, 1999, vol. 94. p. 455.

    Google Scholar 

  8. Suslick, K.S., Hyeon, T., and Fang, M., Chem. Mater., 1996, vol. 8, p. 2172.

    Article  Google Scholar 

  9. Kesvan, V. et al., Pure and Applied Chemistry, 2001, vol. 73, p. 85.

    Article  Google Scholar 

  10. Kumar, G., Tang, H.X., and Schreers J., Nature, 2009, vol. 457, p. 868.

    Article  ADS  Google Scholar 

  11. Chen, C. and Spaepen, F.J., Phys. A, Appl. Phys., 1991, vol. 69, p. 679.

    Article  ADS  Google Scholar 

  12. Michaelson, C, Barmak, K., and Weihs, T.P., J. of Physics D: Appl. Phys., 1997, vol. 30, p. 3167.

    Article  ADS  Google Scholar 

  13. Malkhasyan, R.T. and Grigoryan S.L., Non-equilibrium Technology of Obtaining Nanoamorphous Metals, Proc. of MRS FALL Meeting, Boston, USA, 2003. p. 171.

    Google Scholar 

  14. Kabalyan, Yu.K., Grigoryan, S.L., and Malkhasyan, R.T., Khimicheskiy zhurnal Armenii, 2012, vol. 65, p. 239.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. T. Malkhasyan.

Additional information

Original Russian Text © R.T. Malkhasyan, R.V. Arutyunyan, L.V. Kamaeva, E.I. Salamatov, 2014, published in Izvestiya NAN Armenii, Fizika, 2014, Vol. 49, No. 1, pp. 54–61.

About this article

Cite this article

Malkhasyan, R.T., Arutyunyan, R.V., Kamaeva, L.V. et al. Phase transition of nano-sized amorphous tungsten to a crystalline state. J. Contemp. Phys. 49, 34–38 (2014). https://doi.org/10.3103/S106833721401006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106833721401006X

Keywords

Navigation