Skip to main content
Log in

Four-Photon Mixing in Ghost Fiber Spectroscopy

  • QUANTUM TECHNOLOGIES
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

We report an experimental implementation of linear absorption spectroscopy using a fiber source of frequency-correlated photon pairs. The object under study is illuminated by a signal beam of a photon pair entangled in frequency. Due to the tight correlation of entangled photons, the absorption spectrum of the object can be measured from the idler beam, counting coincidences in both channels. The main advantages of ghost optics are analyzed, including significant noise reduction due to detecting only paired coincidences and cutting off all single background photons, as well as the potential sensitivity of studying samples, which is especially important when working with biological objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Belinsky, A.V. and Singh, R., JETP, 2021, vol. 132, p. 212.

    Article  ADS  Google Scholar 

  2. Balakin, D.A. and Belinsky, A.V., Quantum Inf. Process., 2022, vol. 21, p. 251.

    Article  ADS  Google Scholar 

  3. Balakin, D.A. and Belinsky, A.V., J. Exp. Theor. Phys., 2021, vol. 133, p. 26.

    Article  Google Scholar 

  4. Belinsky, A.V. and Vasilkov, V.V., Opt. Spectrosc., 2023, vol. 131, p. 56.

    Article  Google Scholar 

  5. Magnitskiy, S.A., Agapov, D.P., Belovolov, I.A., et al., Moscow Univ. Phys. Bull., 2021, vol. 76, p. 424.

    Article  ADS  Google Scholar 

  6. Dorfman, K.E., Schlawin, F., and Mukamel, S., Rev. Mod. Phys., 2016, vol. 88, no. 4, p. 045008.

  7. Belinsky, A.V., Starshinov, N.S., and Fedotov, A.B., Moscow Univ. Phys. Bull., 2021, vol. 76, p. 61.

    Article  ADS  Google Scholar 

  8. Belinsky, A.V. and Klyshko, D.N., J. Exp. Theor. Phys., 1994, vol. 78, p. 259.

    ADS  Google Scholar 

  9. Pittman T., Shih Y., Strekalov D.V., and Sergienko, A.V., Phys. Rev. A, 1995, vol. 52, no. 5, p. R3429.

    Article  ADS  Google Scholar 

  10. Quantum Imaging, Kolobov, M.I., Ed., New York: Springer, 2007.

    Google Scholar 

  11. Scarcelli, G., Valencia, A., Gompers, S., and Shih, Y., Appl. Phys. Lett., 2003, vol. 83, no. 26, p. 5560.

    Article  ADS  Google Scholar 

  12. Yabushita, A. and Kobayashi, T., Phys. Rev. A, 2004, vol. 69, no. 1, p. 013806.

  13. Kalachev, A.A., Kalashnikov, D.A., Kalinkin, A.A., et al., Laser Phys. Lett., 2007, vol. 4, no. 10, p. 722.

    Article  ADS  Google Scholar 

  14. Kalachev, A.A., Kalashnikov, D.A., Kalinkin, A.A., et al., Laser Phys. Lett., 2008, vol. 5, no. 8, p. 600.

    Article  ADS  Google Scholar 

  15. Kalashnikov, D.A., Pan, Z., Kuznetsov, A.I., and Krivitsky, L.A., Phys. Rev. X, 2014, vol. 4, no. 1, p. 011049.

  16. Aleksandrov, E.B., Golubev, Yu.M., Lomakin, A.V., and Noskin, V.A., Sov. Phys. Usp., 1983, vol. 26, p. 643.

    Article  ADS  Google Scholar 

  17. Javanainen, J. and Gould, P.L., Phys. Rev. A, 1990, vol. 41, no. 9, p. 5088.

    Article  ADS  Google Scholar 

  18. Gea-Banacloche, J., Phys. Rev. Lett., 1989, vol. 62, no. 14, p. 1603.

    Article  ADS  Google Scholar 

  19. Schlawin, F., Dorfman, K.E., and Mukamel, S., Acc. Chem. Res., 2018, vol. 51, no. 9, p. 2207.

    Article  Google Scholar 

  20. Villabona-Monsalve, J.P., et al., J. Phys. Chem. A, 2017, vol. 121, no. 41, p. 7869.

    Article  Google Scholar 

  21. Schlawin, F., Dorfman, K.E., and Mukamel, S., Phys. Rev. A, 2016, vol. 93, no. 2, p. 023807.

  22. Raymer, M., Marcus, A., Widom, J., and Vitullo, D., J. Phys. Chem. B, 2013, vol. 117, no. 49, p. 15559.

    Article  Google Scholar 

  23. Zhang, Z., Peng, T., Nie, X., et al., Light. Sci. Appl., 2022, vol. 11, p. 274.

    Article  ADS  Google Scholar 

  24. Guzman, A.R., Harpham, M.R., Süzer, Ö., et al., J. Am. Chem. Soc., 2010, vol. 132, p. 7840.

    Article  Google Scholar 

  25. Mukamel, S., Freyberger, M., Schleich, W., et al., J. Phys. B: At. Mol. Opt. Phys., 2020, vol. 53, p. 072002.

  26. Loudon, R., The Quantum Theory of Light, Oxford: Oxford Univ. Press, 2000.

    Book  Google Scholar 

  27. Petrov, N.L., Voronin, A.A., Fedotov, A.B., et al., Appl. Phys. Lett., 2017, vol. 110, no. 18, p. 181108.

Download references

Funding

The work was supported by the Russian Science Foundation [grant no. 22-12-00149 (experimental implementation of linear absorption spectroscopy using a fiber source of frequency-correlated photon pairs) and grant no. 21-12-00155 (calculation of the photon count rate and assessment of the sensitivity of the method)].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. S. Starshinov, A. V. Belinsky or A. B. Fedotov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Ulitkin

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starshinov, N., Belinsky, A. & Fedotov, A. Four-Photon Mixing in Ghost Fiber Spectroscopy. Bull. Lebedev Phys. Inst. 51 (Suppl 1), S58–S65 (2024). https://doi.org/10.3103/S1068335624600207

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335624600207

Keywords:

Navigation