Skip to main content
Log in

Kinetics of Photostimulated Transport in Resonant Tunneling Quantum Well Structures in the Electric Field of a pin Photovoltaic Cell

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The applicability of the resonant tunneling phenomenon for efficient extraction of photogenerated carriers from quantum wells in the electric field of the pin junction is studied. It was found and shown that the efficient functioning of the considered mechanism of photocarrier extraction from quantum wells requires not only a resonant tunnel channel only for electrons; an identical tunnel channel for holes should be implemented. Quantum-well structures implementing the resonant-tunneling mechanism of photoelectron and photohole extraction are developed and proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Barnham, K.W.J. and Duggan, G., A new approach to high efficiency multibandgap solar cells, J. Appl. Phys., 1990, vol. 67, pp. 3490–3493. https://doi.org/10.1063/1.345339

    Article  ADS  Google Scholar 

  2. Barnham, K.W.J., Ballard, I., Connolly, J.P., Ekins-Daukes, N.J., Kluftinger, B.G., Nelson, J., and Rohr, C., Quantum well solar cells, Physica E, 2002, vol. 14, pp. 27–36. https://doi.org/10.1016/S1386-9477(02)00356-9

    Article  ADS  Google Scholar 

  3. Green, M.A., Third generation photovoltaics: solar cells for 2020 and beyond, Physica E, 2002, vol. 14, pp. 65–70. https://doi.org/10.1016/S1386-9477(02)00361-2

    Article  ADS  Google Scholar 

  4. Jani, O. and Honsberg, C., Absorption and transport via tunneling in quantum-well solar cells, Sol. Energy Mater. Sol. Cells, 2006, vol. 90, pp. 3464–3470. https://doi.org/10.1016/j.solmat.2006.01.004

    Article  Google Scholar 

  5. Aeberhard, U., A microscopic theory of quantum well photovoltaics, PhD Dissertation, Zürich: Eidgenössische Technische Hochschule, Zürich, 2008.

  6. Brown, G.F. and Wu, J., Third generation photovoltaics, Laser Photon. Rev., 2009, vol. 3, pp. 394–405. https://doi.org/10.1002/lpor.200810039

    Article  ADS  Google Scholar 

  7. Tsakalakos, L., Ed., Nanotechnology for Photovoltaics, Boca Raton: CRC Press, 2010.

    Google Scholar 

  8. Aeberhard, U. and Morf, R.H., Photovoltaic Effects in Quantum Confined Systems: Microscopic Theory and Numerical Simulation in “Physics of Nanostructured Solar Cells,” Nova Science Publ., 2010.

    Google Scholar 

  9. Aeberhard, U., Spectral properties of photogenerated carriers in quantum well solar cells, Sol. Energy Mater. Sol. Cells, 2010, vol. 94, 1897—1902. https://doi.org/10.1016/j.solmat.2010.06.020

    Article  Google Scholar 

  10. Adams, J.G.J., Browne, B.C., Ballard, I.M., Connolly, J.P., Chan, N.L.A., Ioannides, A., Elder, W., Stavri-nou, P.N., Barnham, K.W.J., and Ekins-Daukes, N.J., Recent results for single-junction and tandem quantum well solar cells, Prog. Photovoltaics Res. Appl., 2011, vol. 19, no. 7, pp. 865–877. https://doi.org/10.1002/pip.1069

    Article  Google Scholar 

  11. Fara, L. and Yahaguchi, M., Eds., Advanced Solar Cell Materials, Technology, Modeling, and Simulation, Hershey: IGI Global, 2013.

    Google Scholar 

  12. Telenkov, M.P. and Mityagin, Yu.A., Resonant-tunneling structure of quantum wells in the p–i–n photovoltaic element, Bull. Lebedev Phys. Inst., 2013, vol. 40, no. 12, pp. 346–353. https://doi.org/10.3103/S106833561312004X

    Article  ADS  Google Scholar 

  13. Aeberhard, U., Simulation of nanostructure-based high-efficiency solar cells: challenges, existing approaches and future directions, IEEE J. Sel. Top. Quant. Electron., 2013, vol. 19, p. 4000411. https://doi.org/10.1109/JSTQE.2013.2257701

  14. Aeberhard, U., Simulation of absorption, photogeneration and carrier extraction in nanostructure-based and ultra-thin film solar cell devices beyond the classical picture, Proc. SPIE, 2014, vol. 8981, p. 898103. https://doi.org/10.1117/12.2040610

  15. Fujii, H., Toprasertpong, K., Wang, Y., Watanabe, K., Sugiyama, M., and Nakano, Y., 100-period, 1.23-eV bandgap InGaAs/GaAsP quantum wells for high-efficiency GaAs solar cells: toward current-matched Ge-based tandem cells, Prog. Photovoltaics Res. Appl., 2014, vol. 22, no. 7, pp. 784–795. https://doi.org/10.1002/pip.2454

    Article  Google Scholar 

  16. Jian-Ya, L., Xin-He, Z., Nai-Ming, W., Xi, C., Bao-Ji, L., Shu-Long, L., and Hui, Y., GaNAs/InGaAs superlattice solar cells with high N content in the barrier grown by all solid-state molecular beam epitaxy, Chin. Phys. Lett., 2015, vol. 32, p. 057301. https://doi.org/10.1088/0256-307x/32/5/057301

  17. Fujii, H., Katoh, T., Toprasertpong, K., Sodabanlu, H., Watanabe, K., Sugiyama, M., Nakano, Y., Thickness-modulated InGaAs/GaAsP superlattice solar cells on vicinal substrates, J. Appl. Phys., 2015, vol. 117, h. 154501. https://doi.org/10.1063/1.4917535

  18. Nagaraja, K.K., Telenkov, M.P., Kazakov, I.P., Savinov, S.A., and Mityagin, Yu.A., Development of GaAs/AlGaAs quantum well structures providing a resonant tunneling regime in an electric field of pin junction, Mater. Today: Proc., 2016, vol. 3, no. 8, pp. 2744–2747. https://doi.org/10.1016/j.matpr.2016.06.021

    Article  Google Scholar 

  19. Shan, H., Chen, B., Li, X., Lin, Z., Xu, S., Hao, Y., and Zhang, J., The performance enhancement of an InGaN/GaN multiple-quantum-well solar cell by superlattice structure, Jpn. J. Appl. Phys., 2017, vol. 56, no. 11, p. 110305. https://doi.org/10.7567/JJAP.56.110305

  20. Sayed, I.E.H., Jain, N., Steiner, M.A., Geisz, J.F., and Bedair, S.M., 100-period InGaAsP/InGaP superlattice solar cell with sub-bandgap quantum efficiency approaching 80%, Appl. Phys. Lett., 2017, vol. 111, p. 082107. https://doi.org/10.1063/1.4993888

  21. Aeberhard, U., Gonzalo, A., and Ulloa, J.M., Photocarrier extraction in GaAsSb/GaAsN type-II QW superlattice solar cells, Appl. Phys. Rev., 2018, vol. 12, p. 213904. https://doi.org/10.1063/1.5030625

  22. Welser, R.E., Polly, S.J., Kacharia, M., Fedorenko, A., Sood, A.K., and Hubbard, S.M., Design and demonstration of high efficiency quantum well solar cells employing thin strained superlattices, Sci. Rep., 2019, vol. 9, p. 1395. https://doi.org/10.1038/s41598-019-50321-x

    Article  Google Scholar 

  23. Telenkov, M.P., Klemmer, P.S., and Mityagin, Yu.A., Resonant tunneling in GaAs/AlGaAs quantum well system for solar photovoltaics, Superlatt. Microstruct., 2020, vol. 140, p. 106472. https://doi.org/10.1016/j.spmi.2020.106472

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-02-00874-a.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. A. Mityagin or M. P. Telenkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mityagin, Y.A., Klemmer, P.S., Telenkov, M.P. et al. Kinetics of Photostimulated Transport in Resonant Tunneling Quantum Well Structures in the Electric Field of a pin Photovoltaic Cell. Bull. Lebedev Phys. Inst. 49, 151–157 (2022). https://doi.org/10.3103/S1068335622060069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335622060069

Keywords:

Navigation