Skip to main content
Log in

Synthesis and structural characterization of nanocrystalline Ni50Al50 − x Mo x intermetallic compound prepared by mechanical alloying

  • Self-Propagating High-Temperature Synthesis
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Nanocrystalline Ni50Al50 − x Mo x (x = 0, 0.5, 1, 2.5, and 5) intermetallic powders were synthesized by mechanical alloying (MA). Microstructural characterization and structural changes of powder particles during mechanical alloying were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results confirmed that the synthesis behavior of NiAl intermetallic depends on the Mo content and milling time. The SEM micrograph outcomes confirmed the specimen with longer milling time includes finer and more homogenous particles with attention to the ones with lesser milling time. Mo enhance has a considerable effect on the lowering of crystallite size. The TEM image showed that the Ni50Al45Mo5 nano-particles were less than 10 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel, R.W. and Fougere, G.E., Mechanical properties of nanophase metals, Nanostructur. Mater., 1995, vol. 6, pp. 205–216.

    Article  Google Scholar 

  2. Huang, B. and Lavernia, E., Materials synthesis by mechanical alloying, J. Mater. Synth. Process., 1995, vol. 3, pp. 1–9.

    Google Scholar 

  3. Chang, H., Höfler, J., Altstetter, C., Averback, and Synthesis, R., Synthesis, processing and properties of nanophase aluminide, Matr. Sci. Eng. A, 1992, vol. 153, pp. 676–678.

    Article  Google Scholar 

  4. Albiter, A., Salazar, M., Bedolla, E., Drew, R., and Perez, R., Improvement of the mechanical properties in a nanocrystalline NiAl intermetallic alloy with Fe, Ga and Mo additions, Mater. Sci. Eng. A, 2003, vol. 347, pp. 154–164.

    Article  Google Scholar 

  5. Lin, C.-K., Hong, S.-S., and Lee, P.-Y., Formation of NiAl–Al2O3 intermetallic-matrix composite powders by mechanical alloying technique, Intermetallics, 2000, vol. 8, pp. 1043–1048.

    Article  Google Scholar 

  6. Choudry, M., Dollar, M., and Eastman, J., Nanocrystalline NiAl-processing, characterization and mechanical properties, Mater. Sci. Eng. A, 1998, vol. 256, pp. 25–33.

    Article  Google Scholar 

  7. Rashidi, S. and Ataie, A., A comparison study of polymer/cobalt ferrite nano-composites synthesized by mechanical alloying route, J. Ultrafine Grained Nanostructur. Mater., 2015, vol. 48, pp. 59–67.

    Google Scholar 

  8. Haghighat-Shishavan, S. and Kashani Bozorg, F., Nano-Crystalline Mg2–xMnxNi compounds synthesized by mechanical alloying: Microstructure and electrochemistry, J. Ultrafine Grained Nanostruct. Mater., 2014, vol. 47, pp. 43–49.

    Google Scholar 

  9. Moshksar, M. and Mirzaee, M., Formation of NiAl intermetallic by gradual and explosive exothermic reaction mechanism during ball milling, Intermetallics, 2004, vol. 12, pp. 1361–1366.

    Article  Google Scholar 

  10. Joardar, J., Pabi, S., and Murty, B., Milling criteria for the synthesis of nanocrystalline NiAl by mechanical alloying, J. Alloys Compd., 2007, vol. 429, pp. 204–210.

    Article  Google Scholar 

  11. Sheng, L., Zhang, W., Guo, J., Yang, F., Liang, Y., and Ye, H., Effect of Au addition on the microstructure and mechanical properties of NiAl intermetallic compound, Intermetallics, 2010, vol. 18, pp. 740–744.

    Article  Google Scholar 

  12. Thompson, R., Zhao, J.-C., Hemker, K., Effect of ternary elements on a martensitic transformation in ß-NiAl, Intermetallics, 2010, vol. 18, pp. 796–802.

    Article  Google Scholar 

  13. Froes, F.S., Suryanarayana, C., Russell, K., and Li, C.-G., Synthesis of intermetallics by mechanical alloying, Mater. Sci. Eng. A, 1995, vol. 192, pp. 612–623.

    Google Scholar 

  14. Khajesarvi, A. and Akbari, G., Properties evaluation and studying production mechanism of nanocrystalline NiAl intermetallic compound by mechanical alloying, Metall. Mater. Trans. A, 2016, vol. 47, pp. 1881–1888.

    Article  Google Scholar 

  15. Liu, E., Jia, J., Bai, Y., Wang, W., and Gao, Y., Study on preparation and mechanical property of nanocrystalline NiAl intermetallic, Mater. Design, 2014, vol. 53, pp. 596–601.

    Article  Google Scholar 

  16. Kubaski, E., Cintho, O., and Capocchi, J., Effect of milling variables on the synthesis of NiAl intermetallic compound by mechanical alloying, Powder Technol., 2011, vol. 214, pp. 77–82.

    Article  Google Scholar 

  17. Zadorozhnyy, V., Kaloshkin, S., Tcherdyntsev, V., Gorshenkov, M., Komissarov, A., and Zadorozhnyy, M., Formation of intermetallic Ni–Al coatings by mechanical alloying on the different hardness substrates, Alloys Compd., 2014, vol. 586, pp. S373–S376.

    Article  Google Scholar 

  18. Kubaski, E., Capocchi, J., Farias, F., Mendes, L., and Cintho, O., In situ thermal observation of explosive compound-formation reaction during mechanical alloying, Phys. Rev. Lett., 1990, vol. 64, p. 487.

    Article  Google Scholar 

  19. Kubaski, E., Capocchi, J., Farias, F., Mendes, L., and Cintho, O., Effect of the nickel particle size on the high-energy milled mixtures of nickel and aluminum powders, Mater. Sci. Tech. Ser., 2008, vol. 2008, pp. 2474–2482.

    Google Scholar 

  20. Darolia, R., Lahrman, D., and Field, R., The effect of iron, gallium and molybdenum on the room temperature tensile ductility of NiAl, Scripta Metall. Mater., 1992, vol. 26, pp. 1007–1012.

    Article  Google Scholar 

  21. Khajesarvi, A. and Akbari, G., Effect of Mo addition on nanostructured Ni50Al50 intermetallic compound synthesized by mechanical alloying, Int. J. Eng.-Trans. C: Aspects, 2015, vol. 28, p. 1328.

    Google Scholar 

  22. Noebe, R.D., Bowman, R.R., and Nathal, M.V., The physical and mechanical metallurgy of NiAl, Metall. Mater. Proc. Intermetallic Compd., Springer, 1996, pp. 212–296.

    Chapter  Google Scholar 

  23. Suryanarayana, C., Mech. Alloy Mill, CRC Press, 2004.

    Book  Google Scholar 

  24. Suryanarayana, C. and Norton, M.G., X-ray diffraction: A practical approach, Microsc. Microanal., 1998, vol. 4, pp. 513–515.

    Article  Google Scholar 

  25. Alizadeh, M., Mohammadi, G., Fakhrabadi, G.-H.A., and Aliabadi, M.M., Investigation of chromium effect on synthesis behavior of nickel aluminide during mechanical alloying process, J. Alloys Compd., 2010, vol. 505, pp. 64–69.

    Article  Google Scholar 

  26. Koch, C., The synthesis and structure of nanocrystalline materials produced by mechanical attrition: A review, Nanostruct. Mater., 1993, vol. 2, pp. 109–129.

    Article  Google Scholar 

  27. Fecht, H., Hellstern, E., Fu, Z., and Johnson, W., Nanocrystalline metals prepared by high-energy ball milling, Metall. Mater. Trans. A, 1990, vol. 21, pp. 2333–2337.

    Article  Google Scholar 

  28. Sharifati, A. and Sharafi, S., Structural and magnetic properties of nanostructured (Fe70Co30) alloy prepared by high energy ball milling, Mater. Design, 2012, vol. 41, pp. 8–15.

    Article  Google Scholar 

  29. Raj, S., Creep Behavior of Near-Stoichiometric Polycrystalline Binary Alloy, NASA TM-2002-2 1 12 10, Cleveland, Glenn Research Center, OH2002.

  30. Bonetti, E., Campari, E., Pasquini, L., Sampaolesi, E., and Scipione, G., Mechanical behaviour of NiAl and Ni3Al ordered compounds entering the nano-grain size regime, Nanostruct. Mater., 1999, vol. 12, pp. 895–898.

    Article  Google Scholar 

  31. Chan, K., Theoretical analysis of grain size effects on tensile ductility, Scripta Metall. Mater., 1990, vol. 24, pp. 1725–1730.

    Article  Google Scholar 

  32. Noebe, R.D., Bowman, R.R., and Nathal, M.V., The Physical and Mechanical Metallurgy of NiAl, Springer, 1996.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Khajesarvi.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khajesarvi, A., Akbari, G.H. Synthesis and structural characterization of nanocrystalline Ni50Al50 − x Mo x intermetallic compound prepared by mechanical alloying. Russ. J. Non-ferrous Metals 58, 411–417 (2017). https://doi.org/10.3103/S1067821217040083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821217040083

Keywords

Navigation