Skip to main content
Log in

Good bonding between coated B4C particles and aluminum matrix fabricated by semisolid techniques

  • Physical Metallurgy and Heat Treatment
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The mechanical and tribological properties of aluminum matrix composites are mainly determined by the cohesion and uniformity of the reinforcing ceramic particles. The cohesion of the reinforcing ceramic particles represents a very important issue which is mostly poor at temperatures near the melting point of aluminum and leads to inferior mechanical and tribological properties of developed aluminum matrix composites with non uniform distribution of reinforcement. The main reason for coating the particles is to improve the bonding between reinforcement and molten alloy and thus to eliminate interfacial reactions. The great enhancement in strength values of the composites in this study can be ascribed to the effective load bearing capacity of disintegrated B4C particles which are adherently bonded to the matrix alloy. Homogeneity and reduction in the particle size of B4C during the extrusion process is evidenced in the microstructural studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shabani, M.O. and A. Mazahery, A., Composites: Part B, 2013, vol. 45, pp. 185–191.

    Article  CAS  Google Scholar 

  2. Mazahery, A. and Shabani, M.O., Ceram. Int., 2012, vol. 38, pp. 1887–1895.

    Article  CAS  Google Scholar 

  3. Barati, M. and Claytor, G., J. Mater. Sci., 2007, vol. 39, pp. 567–576.

    Google Scholar 

  4. Alipour, G. and Sarikaya, M., J. Mater. Sci. Res., 2011, vol. 11, pp. 145–151.

    Google Scholar 

  5. Pyzik, A.J. and Aksay, I.A., Processing of ceramic and metal matrix composites, Proceedings of the International Symposium on Advances in Processing of Ceramic and Metal Matrix Composites, New York, NY, 1989, p. 269.

    Google Scholar 

  6. Pyzik, A.J. and Beaman, D.R., J. Am. Ceram. Soc., 1995, vol. 78, pp. 305–312.

    Article  CAS  Google Scholar 

  7. Rhee, S.K., J. Am. Ceram. Soc., 1970, vol. 53, pp. 386–389.

    Article  CAS  Google Scholar 

  8. Mazahery, A. and Shabani, M.O., Powder Technol., 2012, vol. 217, pp. 558–565.

    Article  CAS  Google Scholar 

  9. Vugt, L.V. and Froyen, L., J. Mater. Process. Technol., 2000, vol. 104, pp. 133–144.

    Article  Google Scholar 

  10. Irons, G.A. and Owusu-Boahen, K., Metall. Mater. Trans. B, 1995, vol. 26, pp. 980–981.

    Article  Google Scholar 

  11. Gowri, S. and Samuel, F.H., Metall. Trans. A, 1992, vol. 23, pp. 3369–3376.

    Google Scholar 

  12. Gupta, M., Lu, L., and Ang, S.E., J. Mater. Sci., 1997, vol. 32, pp. 1261–1267.

    Article  CAS  Google Scholar 

  13. Karnezis, P.A., Durrant, G., and Cantor, B., Mater. Charact., 1998, vol. 40, pp. 97–109.

    Article  CAS  Google Scholar 

  14. Mazahery, A. and Shabani, M.O., Ceram. Int., 2012, vol. 38, no. 5, pp. 4263–4269.

    Article  CAS  Google Scholar 

  15. Quaak, C.J. and Kool, W.H., Mater. Sci. Eng. A, 1994, vol. 188, pp. 277–282.

    Article  Google Scholar 

  16. Hashim, J., Looney, L., and Hashmi, M., J. Mater. Process. Technol., 1999, vols. 92–93, pp. 1–7.

    Article  Google Scholar 

  17. Asthana, A.J., J. of Mater. Sci. and Eng., 1998, vol. 35, pp. 1959–1980.

    Google Scholar 

  18. Leon, C.A. and Drew, R.L., J. Mater. Sci., 2000, vol. 35, pp. 4763–4768.

    Article  CAS  Google Scholar 

  19. Davidson, A.M. and Regener, D., Compos. Sci. Technol., 2000, vol. 60, pp. 865–869.

    Article  CAS  Google Scholar 

  20. Tham, L.M., Gupta, M., and Cheng, L., Acta Materialia, 2001, vol. 49, pp. 3243–3253.

    Article  CAS  Google Scholar 

  21. Fard, R.R. and Akhlaghi, F., J. of Mater. Process. Technol., 2007, vols. 187–188, pp. 433–436.

    Article  Google Scholar 

  22. Thakur, S.K., B.K. Wear, 2001, vol. 247, p. 201.

    Google Scholar 

  23. Moustafa, S.F., Badry, S.A., Sanad, A.M., and Kieback, B., Wear, 2002, vol. 253, pp. 699–710.

    Article  CAS  Google Scholar 

  24. Zhan, Y.Z. and Zhang, G., Mater. Letters, 2003, vol. 57, pp. 4583–4591.

    Article  CAS  Google Scholar 

  25. Cocen, U. and Onel, K., Compos. Sci. Technol., 2002, vol. 62, pp. 275–282.

    Article  CAS  Google Scholar 

  26. McKimpson, M.G. and Scott, T.E., Mater. Sci. and Eng., 1989, vol. 107, pp. 93–106.

    Article  Google Scholar 

  27. Ozdemir, I., Cocen, U., and Onel, K., Compos. Scie. and Technol., 2000, vol. 60, pp. 411–419.

    Article  CAS  Google Scholar 

  28. Varma, V.K., Kamath, S.V., Kutumabarao, V.V., Mater. Sci. and Technol., 2000, vol. 17, pp. 921–936.

    Google Scholar 

  29. Zhong, L., J. of Compos. Mater., 2000, vol. 34, pp. 101–115.

    CAS  Google Scholar 

  30. Bauri, R. and Surappa, M.K., J. of Mater. Process. Technol., 2009, vol. 209, pp. 2077–2084.

    Article  CAS  Google Scholar 

  31. Petalas, Y.G., Antonopoulos, C.G., Bountis, T.C., and Vrahatis, M.N., Phys. Lett. A, 2009, vol. 373, pp. 334–341.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Ostad Shabani.

Additional information

The article is published in the original.

About this article

Cite this article

Shabani, M.O., Mazahery, A. Good bonding between coated B4C particles and aluminum matrix fabricated by semisolid techniques. Russ. J. Non-ferrous Metals 54, 154–160 (2013). https://doi.org/10.3103/S1067821213020120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821213020120

Keywords

Navigation