Skip to main content
Log in

Degradation of phenolic compounds in water by non-thermal plasma treatment

  • Physical Chemistry of Water Treatment Processes
  • Published:
Journal of Water Chemistry and Technology Aims and scope Submit manuscript

Abstract

A stainless-steel hollow needle type anode was used in the reactor to treat industrial wastewater by gas-liquid phase of non-thermal plasma by corona discharge. The results showed that the short electrode gap, 1 cm, has a higher plasma energy density which improves the removal of the phenolic derivatives, reaching 100% after about 60 min. The H2O2 concentration was higher in the discharge system when the content of oxygen was increased. The efficiency of the phenol removal by chemical oxygen demand was only 10–31% after 60 minutes. The identified intermediates were catechol, hydroquinone, 1,4-benzoquinone, 2-nitrophenol, 1,2-benzenedicarboxylic acid, diphenylmethanone, 2-methyl-hydroquinone, 2-methyl-1,4-bezoquinone, and trace amounts of organic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sugiarto, A.T. and Sato, M., Thin Solid Films, 2001, vol. 386, pp. 295–299.

    Article  CAS  Google Scholar 

  2. Ighigeanu, D.I., Calinescu, I.I., Martin, D.I., and Matei, C.I., AIP Conf. Proc. (Instabul, 2007), Istanbul, 2007.

  3. Lei, L., Zhang, X., and Shen, Y.J., Electrostat., 2008, vol. 66, pp. 16–24.

    Article  Google Scholar 

  4. Farrokhi, M., Mesdahinia, A.R., and Yazdanbakhsh, A.R., and Nasseri, S., Iran. J. Environ. Health, 2004, vol. 1, pp. 12–18.

    Google Scholar 

  5. Chen, Y.S., Zhang, X.C., Dau, Y.C., and Yuan, W.K., Sep. Purif. Technol., 2004, vol. 34, pp. 5–12.

    Article  CAS  Google Scholar 

  6. Chang, J., J. Sci. Technol. Adv. Materials., 2004, vol. 2, pp. 571–576.

    Article  Google Scholar 

  7. Hernandez, R., Zappi, M., Colucci, J., and Jones, R., J. Hazard. Materials., 202, vol. 92, pp. 33–50.

  8. Lukes, P., Lupek, M., Babicks, V., and Unka, P., Winerova, G., and Janda, V., Acta Phys. Slovaca., 2003, vol. 53, pp. 423–428.

    CAS  Google Scholar 

  9. Hao, X.L., Zhou, M.H., Zhang, Y., and Lei, L.C., Plasma Chem/Plasma Process., 2006, vol. 26, pp. 455–468.

    Article  CAS  Google Scholar 

  10. Sun, B., Sato, M., and Clements, J.S., Environ. Sci. and Technol., 2004, vol. 34, pp. 509–513.

    Article  Google Scholar 

  11. Hao, X.L., Zhou, M.H., and Lei, L.C., J. Hazard. Materials, 2007, vol. 141, pp. 475–482.

    Article  CAS  Google Scholar 

  12. Pacheco, M,J., Morap, A., Lopes, A., Ciriaco, L., and Goncalves, I., Electrochim. Acta, 2007, vol. 53, pp. 629–636.

    Article  CAS  Google Scholar 

  13. Wangs, L. and Jiang, X.J., Hazard. Materials, 2009, vol. 16, pp. 926–932.

    Google Scholar 

  14. Sun, B., Sato, M., and Clements, J.S., J. Electrostat., 1997, vol. 39, pp. 189–202.

    Article  CAS  Google Scholar 

  15. Yan, J.H., Du, C.M., Li, X.D., Sun, X.D., Ni, M.J., Cen, K.F., and Cheron, B., Plasma Sources Sci. Technol., 2005, vol. 14, pp. 637–644.

    Article  CAS  Google Scholar 

  16. Wang, J., Mei, Y., Liu, V., and Chen, J., J. Environ. Sci., 008, vol. 20, pp. 1304–1311.

  17. Sumka, P., Babixky, V., Clupek, M., Lkes, P., Simek, M., Schmidt, J., and Cernak, M., Plasma Sources Sci. Technol., 1999, vol. 8, pp. 258–265.

    Article  Google Scholar 

  18. Lukes, P., Appleton, A.T., and Locke, B.R., IEEE Trans. Ind. Appl., 2004, vol. 40, pp. 60–67.

    Article  CAS  Google Scholar 

  19. Hoeben, W.F.L.M., van Veldhizen, E.M., Rutgers, W.R., Cramers, C.A/M/G., and Krasen, G.M.W., Plasma Sources Sci. Technol., 2000, vol. 9, pp. 361–369.

    Article  CAS  Google Scholar 

  20. Shin, W.T., Yiaoumi, S., Tsaoris, C., and Dai, S., Ind. Eng. Chem. Res., 2000, vol. 2000, pp. 4408–4414.

    Article  Google Scholar 

  21. Grymonprs, D.R., Finney, W.C., Clark, R.J., and Locke, B.R., ibid., 2003, vol. 42, pp. 5117–5134.

    Article  Google Scholar 

  22. Lukes, P. and Locke, B.R., Ind. Eng. Chem. Res., 2005, vol. 44, pp. 2921–2930.

    Article  CAS  Google Scholar 

  23. Lukes, P. and Locke, B.R., Phys. D: Appl. Phys,, 2005, vol. 38, pp. 4074–4081.

    Article  CAS  Google Scholar 

  24. Kubesch, K., Zona, R., Solar, S., and Gehringer, P., 2005, vol. 72, pp. 447–453.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Hsu-Hui Cheng, Shiao-Shing Chen, Kazuharu Yoshizuka, Yung-Chih Chen, 2012, published in Khimiya i Tekhnologiya Vody, 2012, Vol. 34, No. 4, pp. 304–319.

About this article

Cite this article

Cheng, HH., Chen, SS., Yoshizuka, K. et al. Degradation of phenolic compounds in water by non-thermal plasma treatment. J. Water Chem. Technol. 34, 179–189 (2012). https://doi.org/10.3103/S1063455X12040030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063455X12040030

Keywords

Navigation