Skip to main content
Log in

Rank-One Approximation of Positive Matrices Based on Methods of Tropical Mathematics

  • Mathematics
  • Published:
Vestnik St. Petersburg University, Mathematics Aims and scope Submit manuscript

Abstract

Low-rank matrix approximation finds wide application in the analysis of big data, in recommendation systems on the Internet, for the approximate solution of some equations of mechanics, and in other fields. In this paper, a method for approximating positive matrices by rank-one matrices on the basis of minimization of log-Chebyshev distance is proposed. The problem of approximation reduces to an optimization problem having a compact representation in terms of an idempotent semifield in which the operation of taking the maximum plays the role of addition and which is often referred to as max-algebra. The necessary definitions and preliminary results of tropical mathematics are given, on the basis of which the solution of the original problem is constructed. Using the methods and results of tropical optimization, all positive matrices at which the minimum of approximation error is reached are found in explicit form. A numerical example illustrating the application of the rank-one approximation is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. A. Solovyev, “Application of the low-rank approximation technique in the Gauss elimination method for sparse linear systems,” Vychisl. Metody Programm. 15, 441–460 (2014).

    Google Scholar 

  2. K. V. Voronin and S. A. Solovyev, “Solution of the Helmholtz problem using the preconditioned low-rank approximation technique,” Vychisl. Metody Programm. 16, 268–280 (2015).

    Google Scholar 

  3. J. Lee, S. Kim, G. Lebanon, and Y. Singer, “Local low-rank matrix approximation,” in Proc. 30th Int. Conf. on Machine Learning (ICML 2013), Atlanta, GA, 2013 (International Machine Learning Society, Stroudsburg, PA, 2013), pp. 82–90.

    Google Scholar 

  4. J. Lee, S. Bengio, S. Kim, et al., “Local collaborative ranking,” in Proc. 23rd Int. Conf. on World Wide Web (WWW’14), Seoul, Korea, April 7–11, 2014 (ACM, New York, 2014), pp. 85–96. https://doi.org/10.1145/2566486.2567970.

    Google Scholar 

  5. B. Savas, Algorithms in Data Mining Using Matrix and Tensor Methods (Linköping Univ., Inst. of Technology, Linköping, Sweden, 2008), in Ser.: Linköping Studies in Science and Technology, Dissertations, Vol. 1178.

    Google Scholar 

  6. M. Ispany, G. Michaletzky, J. Reiczigel, et al., “Approximation of non–negative integer–valued matrices with application to Hungarian mortality data,” in Proc. 19th Int. Symp. on Mathematical Theory of Networks and Systems (MTNS 2010), Budapest, Hungary, July 5–9, 2010 (MTNS, 2010), pp. 831–838.

    Google Scholar 

  7. E. E. Tyrtyshnikov, Matrices, Tensors and Computations. Textbook (Mosk. Gos. Univ., Moscow, 2013) [in Russian].

    Google Scholar 

  8. H. Wang and N. Ahuja, “A tensor approximation approach to dimensionality reduction,” Int. J. Comput. Vis. 76, 217–229 (2008). https://doi.org/10.1007/s11263-007-0053-0.

    Article  Google Scholar 

  9. Q. Yao and J. Kwok, “Greedy learning of generalized low-rank models,” inProc. 25th Int. Joint Conf. on Artificial Intelligence (IJCAI’16), New York, July 9–10, 2016 (AAAI Press, Palo Alto, CA, 2016), pp. 2294–2300.

    Google Scholar 

  10. A. V. Shlyannikov, “Generation algorithm for 3D face model by a photograph,” Nauchno-Tekh. Vestn. Inf. Tekhnol., Mekh. Opt. 69 (5), 86–90 (2010).

    Google Scholar 

  11. A. Aissa-El-Bey and K. Seghouane, “Sparse canonical correlation analysis based on rank-1 matrix approximation and its application for FMRI signals,” in Proc. 2016 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, Mar. 20–25, 2016 (IEEE, Piscataway, NJ, 2016), 4678–4682. https://doi.org/10.1109/ICASSP.2016.7472564.

    Google Scholar 

  12. R. Luss and M. Teboulle, “Conditional gradient algorithms for rank-one matrix approximations with a sparsity constraint,” SIAM Rev. 55, 65–98 (2013). https://doi.org/10.1137/110839072.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Friedland, V. Mehrmann, R. Pajarola, and S. K. Suter, “On best rank one approximation of tensors,” Numer. Linear Algebra Appl. 20, 942–955 (2013). https://doi.org/10.1002/nla.1878.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. P. da Silva, P. Comon, and A. L. F. de Almeida, Rank-1 Tensor Approximation Methods and Application to Deflation, Research Report (GIPSA-lab, 2015).

    Google Scholar 

  15. T. Saaty, The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation (McGraw-Hill, New York, 1980; Radio i Svyaz’, Moscow, 1993).

    MATH  Google Scholar 

  16. H. Shen and J. Huang, “Sparse principal component analysis via regularized low rank matrix approximation,” J. Multivar. Anal. 99, 1015–1034 (2008). https://doi.org/10.1016/j.jmva.2007.06.007.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Zietak, “The Chebyshev approximation of a rectangular matrix by matrices of smaller rank as the limit of lpapproximation,” J. Comput. Appl. Math. 11, 297–305 (1984). https://doi.org/10.1016/0377-0427(84)90004-9.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge Univ. Press, Cambridge, 2004).

    Book  MATH  Google Scholar 

  19. N. Gillis and Y. Shitov, “Low-rank matrix approximation in the infinity norm” (2017). arXiv 1706.00078.

    Google Scholar 

  20. M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of second-order cone programming,” Linear Algebra Appl. 284, 193–228 (1998). https://doi.org/10.1016/S0024-3795(98)10032-0.

    Article  MathSciNet  MATH  Google Scholar 

  21. N. K. Krivulin, Methods of Idempotent Algebra for Problems in Modeling and Analysis of Complex Systems (S.-Peterb. Gos. Univ., St. Petersburg, 2009) [in Russian].

    Google Scholar 

  22. N. Krivulin, “Using tropical optimization techniques to evaluate alternatives via pairwise comparisons,” in Proc. 7th SIAM Workshop on Combinatorial Scientific Computing, Albuquerque, NM, Oct. 10–12, 2016 (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2016), pp. 62–72. https://doi.org/10.1137/1.9781611974690.ch7.

    Chapter  Google Scholar 

  23. N. K. Krivulin, V. A. Ageev, and I. V. Gladkikh, “Application of methods of tropical optimization for evaluating alternatives based on pairwise comparisons,” Vestn. St. Peterb. Univ., Ser. 10: Prikl. Mat. Inf. Protsessy Upr. 13, 27–41 (2017). https://doi.org/10.21638/spbu10.2017.103.

    Google Scholar 

  24. N. K. Krivulin, “Eigenvalues and eigenvectors of matrices in idempotent algebra,” Vestn. St. Petersburg Univ.: Math. 39, 72–83 (2006).

    MathSciNet  Google Scholar 

  25. N. Krivulin, “Extremal properties of tropical eigenvalues and solutions to tropical optimization problems,” Linear Algebra Appl. 468, 211–232 (2015). https://doi.org/10.1016/j.laa.2014.06.044.

    Article  MathSciNet  MATH  Google Scholar 

  26. V. P. Maslov and V. N. Kolokoltsov, Idempotent Analysis and Its Applications to Optimal Control Theory (Fizmatlit, Moscow, 1994) [in Russian].

    Google Scholar 

  27. J.-E. Pin, “Tropical semirings,” in Idempotency, Ed. by J. Gunawardena (Cambridge Univ. Press, Cambridge, 1998), pp. 50–69.

    Chapter  Google Scholar 

  28. G. L. Litvinov, V. P. Maslov, and A. N. Sobolevskii, “Idempotent mathematics and interval analysis,” Vychisl. Tekhnol. 6 (6), 47–70 (2001).

    MathSciNet  MATH  Google Scholar 

  29. P. Butkovič, Max-Linear Systems: Theory and Algorithms (Springer-Verlag, London, 2010), in Ser.: Springer Monographs in Mathematics. https://doi.org/10.1007/978-1-84996-299-5.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Krivulin.

Additional information

Original Russian Text © N.K. Krivulin, E.Yu. Romanova, 2018, published in Vestnik Sankt-Peterburgskogo Universiteta: Matematika, Mekhanika, Astronomiya, 2018, Vol. 63, No. 2, pp. 216–230.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivulin, N.K., Romanova, E.Y. Rank-One Approximation of Positive Matrices Based on Methods of Tropical Mathematics. Vestnik St.Petersb. Univ.Math. 51, 133–143 (2018). https://doi.org/10.3103/S106345411802005X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106345411802005X

Keywords

Navigation