Skip to main content
Log in

Possibility of Identifying Virtual Components for Prescission Neutrons

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A study is performed of the mechanism responsible for the creation of prescission neutrons in spontaneous fission and fission induced by thermal neutrons, a process that has been investigated experimentally in a number of works for nuclei of the actinide group. It is shown that the spectra of prescission neutrons correspond to mean kinetic energies on the order of 0.5 MeV and angular distributions with a characteristic maximum near an angle of 90° between the direction of the emission of the indicated neutrons and that of a light fragment of fission. It is shown these characteristics of the neutron spectrum can be explained by considering the emission of prescission neutrons from the neck of a compound fissile nucleus, based on virtual ternary nuclear fission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Akhiezer, A.I. and Berestetskii, V.B., Kvantovaya elektrodinamika (Quantum Electrodynamics), Moscow: Fizmatgiz, 1981.

  2. Kadmensky, S.G. and Ivankov, Yu.V., Phys. At. Nucl., 2014, vol. 77, no. 8, p. 119.

    Google Scholar 

  3. Kadmensky, S.G. and Ivankov, Yu.V., Phys. At. Nucl., 2014, vol. 77, no. 12, p. 1605.

    Google Scholar 

  4. Kadmensky, S.G., Ivankov, Yu.V., and Lyubashevsky, D.E., Phys. At. Nucl., 2017, vol. 80, no. 5, p. 903.

    Article  Google Scholar 

  5. Kadmensky, S.G., Titova, L.V., and Lyubashevsky, D.E., Phys. At. Nucl., 2020, vol. 83, no. 4, p. 326.

    Google Scholar 

  6. Goldansky, V.I., Zh. Eksp. Teor. Fiz., 1960, vol. 39, p. 497.

    Google Scholar 

  7. Goldansky, V.I., Usp. Fiz. Nauk, 1965, vol. 87, p. 255.

    Article  Google Scholar 

  8. Pfutzner, M., Badura, E., Bingham, C., et al., Eur. Rev. Lett., 2002, vol. 14, p. 279.

    Google Scholar 

  9. Giovanezzo, J., Blank, B., Chartier, M.S., et al., Phys. Rev. Lett., 2002, vol. 89.

  10. Dossat, C., Bey, A., Blank, B., et al., Phys. Rev. C, 2005, vol. 72, 054315.

    Article  ADS  Google Scholar 

  11. Lyubashevsky, D.E., Bull. Russ. Acad. Sci.: Phys., 2021, vol. 85, no. 10, p. 1201.

    Google Scholar 

  12. Sliv, L.A., Zh. Eksp. Teor. Fiz., 1950, vol. 20, p. 1035.

    Google Scholar 

  13. Suhonen, J. and Civitarese, O., Phys. Rep., 1998, vol. 300, p. 123.

    Article  ADS  Google Scholar 

  14. Tretyak, V.I., Double Beta Decay: History and Current Status, Kyiv: Kyiv Inst. Nucl. Res., 2014.

    Google Scholar 

  15. Kadmensky, S.G. and Titova, L.V., Bull. Russ. Acad. Sci. Phys, 2021, vol. 85, no. 5, p. 569.

    Article  Google Scholar 

  16. Kadmensky, S.G. and Bulychev, A.O., Phys. At. Nucl., 2016, vol. 79, no. 5, p. 793.

    Article  Google Scholar 

  17. Kadmensky, S.G. and Bulychev, A.O., Bull. Russ. Acad. Sci.: Phys., 2016, vol. 80, p. 921.

    Article  Google Scholar 

  18. Vermote, S., Wagemans, C., Serot, O., et al., Nucl. Phys. A, 2010, vol. 837, p. 176.

    Article  ADS  Google Scholar 

  19. Mutterer, M. and Theobald, J.P., Dinuclear Decay Modes, Bristol: IOP, 1976, chapter 12.

    Google Scholar 

  20. Capote, R., Chen, Y.-J., Hambsch, F.-J., et al., Nucl. Data Sheeets, 2016, vol. 131, p. 1.

    Article  ADS  Google Scholar 

  21. Vorobyev A.S., Shcherbakov O.A., Gagarsky A.M. et al., J. Exp. Theor. Phys., 2017, vol. 152, no. 4, p. 619.

    Article  ADS  Google Scholar 

  22. Vorobyev A.S., Shcherbakov O.A., Gagarsky A.M. et al., J. Exp. Theor. Phys., 2018, vol. 154, p. 659.

    Article  ADS  Google Scholar 

  23. Vorobyev A.S., Shcherbakov O.A., Gagarsky A.M. et al., Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 10, p. 1245.

    Article  Google Scholar 

  24. Vorobyev, A.S., Shcherbakov, O.A., Gagarsky, A.M., et al., EPJ Web Conf., 2020, vol. 239, 05008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Kadmensky.

Ethics declarations

The authors declare they have no conflicts of interest.

Additional information

Translated by I. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadmensky, S.G., Kufaev, S.V. & Otvodenko, Y.O. Possibility of Identifying Virtual Components for Prescission Neutrons. Bull. Russ. Acad. Sci. Phys. 86, 1102–1107 (2022). https://doi.org/10.3103/S1062873822090106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822090106

Navigation