Skip to main content
Log in

NiAl-based electrodes by combined use of centrifugal SHS and induction remelting

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

NiAl-based electrodes of a required size were fabricated by combined use of centrifugal SHS casting and induction remelting in an inert atmosphere and characterized by modern analytical methods. Thus produced electrode materials exhibiting high chemical purity and low content of impurity gases (0.005 wt % O, 0.0001 wt % N) can be recommended for use in centrifugal plasma sputtering of micro granules via the plasma rotating electrode process (PREP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reed, R.C., The Superalloys: Fundamentals and Applications. Cambridge–New York: Cambridge University Press, 2006.

    Book  Google Scholar 

  2. Schafrik, R. and Sprague, R., Saga of gas turbine materials: Part III, Adv. Mater. Process., 2004, vol. 162, no. 5, pp. 29–33.

    Google Scholar 

  3. Pollock, T.M. and Tin, S., Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure, and properties, J. Propuls. Power, 2006, vol. 22, no. 2, pp. 361–374.

    Article  Google Scholar 

  4. Sato, J., Omori, T., Oikawa, K., Ohnuma, I., Kainuma, R., and Ishida, K., Cobalt-base high-temperature alloys, Science, 2006, vol. 312, no. 5770, pp. 90–91. doi 10.1126/science.1121738

    Article  Google Scholar 

  5. Makineni, S.K., Nithin, B., and Chattopadhyay, K., A new tungsten-free Co–Al–Mo–Nb-based superalloy, Scr. Mater., 2015, vol. 98, pp. 36–39. doi 10.1016/j.scriptamat.2014.11.009

    Article  Google Scholar 

  6. Shinagawa, K., Omori, T., Oikawa, K., Kainuma, R., and Ishida, K., Ductility enhancement by boron addition in Co–Al–W high-temperature alloys, Scr. Mater., 2009, vol. 61, no. 6, pp. 612–615. doi 10.1016/j.scriptamat.2009.05.037

    Article  Google Scholar 

  7. Drawin, S., The European ULTMAT project: Properties of new Mo and Nb silicide based materials, Mater. Res. Soc. Symp. Proc., 2009, p. 1128.

    Google Scholar 

  8. Balsone, S.J., Bewley, B.P., Jackson, M.R., Subramanian, P.R., Ji-Cheng, Z., Chatterjee, A., and Heffernan, T.M., Materials beyond superalloys-exploiting high temperature composites, Struct. Intermetallics, 2001, pp. 99–108.

    Google Scholar 

  9. Heilmaier, M., Saage, H., Krüger, M., Jehanno, P., Böning, M., Kestler, H., and Drawin, S., Current status and future trends of Mo-based silicide alloys for ultrahigh temperature applications, JSPS Report of the 123rd Committee on Heat Resisting Materials and Alloys, 2007, vol. 48, pp. 245–259.

    Google Scholar 

  10. Levashov, E.A., Pogozhev, Yu.S., Potanin, A.Yu., Kochetov, N.A., Kovalev, D.Yu., Shvyndina, N.V., and Sviridova, T.A., Self-propagating high-temperature synthesis of advanced ceramics in the Mo–Si–B system: Kinetics and mechanism of combustion and structure formation, Ceram. Int., 2014, vol. 40, no. 5, pp. 6541–6552. doi 10.1016/j.ceramint.2013.11.107

    Article  Google Scholar 

  11. Chengfang, Y., Xiping, G., and Haisheng, G., Microstructural characteristics of integrally directionally solidified Nb–Ti–Si base ultrahigh temperature alloy with crucibles, Acta Metall. Sinica, 2008, vol. 44, no. 5, pp. 579–584.

    Google Scholar 

  12. Noebe, R.D., Bowman, R.R., and Nathal, M.V., Physical and mechanical properties of the B2 compound NiAl, Int. Mater. Rev., 1993, vol. 38, no. 4, pp. 193–232.

    Article  Google Scholar 

  13. Miracle, D.B., The physical and mechanical properties of NiAl, Acta Mater., 1993, vol. 41, no. 3, pp. 649–657. doi 10.1016/0956-7151(93)90001-9

    Article  Google Scholar 

  14. Johnson, D.R., Chen, X.F., Oliver, B.F., Noebe, R.D., and Whittenberger, J.D., Processing and mechanical properties of in-situ composites from the NiAl–Cr and the NiAl–(Cr,Mo) eutectic systems, Intermetallics, 1995, vol. 3, no. 2, pp. 99–113. doi 10.1016/0966-9795(95)92674-O

    Article  Google Scholar 

  15. Bannykh, O.A. and Povarova, K.B., Intermetallics are a new class of light heat-resistant materials, Tekhnol. Legkikh Splavov, 1992, vol. 5, no. 1. pp. 26–32.

    Google Scholar 

  16. Sheng, L.Y., Guo, J.T., and Ye, H.Q., Microstructure and mechanical properties of NiAl–Cr(Mo)/Nb eutectic alloy prepared by injection-casting, Mater. Design, 2009, vol. 30, no. 4, pp. 964–969. doi 10.1016/j.matdes. 2008.06.061

    Article  Google Scholar 

  17. Liu, E., Jia, J., Bai, Y., Wang, W., and Gao, Y., Study on preparation and mechanical property of nanocrystalline NiAl intermetallic, Mater. Design, 2014, vol. 53, pp. 596–601. doi 10.1016/j.matdes.2013.07.052

    Article  Google Scholar 

  18. Knoche, R., Werth, E., and Wilhelmi, Ch., Design and development of an oxide CMC combustion chamber for gas turbines, presented at HTCMC, 2013, p. 8.

    Google Scholar 

  19. Mileiko, S.T., Interfaces in oxide–fiber-based composites, Curr. Opin. Solid State Mater. Sci., 2006, vol. 9, nos. 4–5, pp. 219–229. doi 10.1016/j.cossms.2006. 05.004

    Google Scholar 

  20. Mileiko, S.T., Sarkissyan, N.S., Kolchin, A.A., and Kiiko, V.M., Oxide fibres in a Ni-based matrix–Do they degrade or become stronger?, J. Mater. Design Appl., 2004, vol. 218, pp. 193–200. doi 10.1177/146442070421800303

    Google Scholar 

  21. Ruggle-Wrenn, M.B. and Genelin, C.L., Creep of NextelTM720/alumina–mullite ceramic composite at 1200°C in air, argon, and steam, Compos. Sci. Technol., 2009, vol. 69, pp. 663–669.

    Article  Google Scholar 

  22. Lemberg, J.A., Middlemas, M.R., Weingartner, T., Gludovatz, B., Cochran, J.K., and Ritchie, R.O., On the fracture toughness of fine-grained Mo–3Si–1B (wt %) alloys at ambient to elevated (1300°C) temperatures, Intermetallics, 2012, vol. 20, no. 1, pp. 141–154. doi 10.1016/j.intermet.2011.09.003

    Article  Google Scholar 

  23. Kazmin, V.I., Mileiko, S.T., and Tvardovsky, V.V., Strength of ceramic matrix–metal fiber composites, Compos. Sci. Technol., 1990, vol. 38, no. 1, pp. 69–84. doi 10.1016/0266-3538(90)90072-D

    Article  Google Scholar 

  24. Mileiko, S.T., Serebryakov, A.V., Kiiko, V.M., Kolchin, A.A., Kurlov, V.N., and Novokhatskaya, N.I., Single crystalline mullite fibres obtained by the internal crystallization method: Microstructure and creep resistance, J. Eur. Ceram. Soc., 2009, vol. 29, no. 3, pp. 337–345. doi 10.1016/j.jeurceramsoc.2008.06.022

    Article  Google Scholar 

  25. Povarova, K.B., Filin, S.A., and Maslenkov, S.B., Phase neutrality in Ni–Al–Me (Me = Co,Fe,Mn,Cu) systems at 900 and 1100°C, Metals, 1993, no. 1, pp. 191–207.

    Google Scholar 

  26. Gao, Q., Guo, J.T., and Huai, K.W., Microstructure and phase solubility extension in injection cast NiAl–28Cr–5.7Mo–0.3Hf alloy, Intermetallics, 2007, vol. 15, nos. 5–6, pp. 734–737. doi 10.1016/j.intermet.2006. 10.021

    Article  Google Scholar 

  27. Li, H., Wang, Q., He, Ji, Guo. J., and Ye, H., ß-Ti(M) solid solution formation and its thermal stability in a NiAl–Cr(Mo)–(Hf,Ti) near eutectic alloy, Mater. Character., 2008, vol. 59, no. 10, pp. 1395–1399. doi 10.1016/j.matchar.2007.12.006

    Article  Google Scholar 

  28. Frommeyer, G., Rablbauer, R., and Schäfer, H.J., Elastic properties of B2-ordered NiAl and NiAl–X (Cr, Mo, W) alloys, Intermetallics, 2010, vol. 18, no. 3, pp. 299–305. doi 10.1016/j.intermet.2009.07.026

    Article  Google Scholar 

  29. Deges, J., Schneider, A., Fischer, R., and Frommeyer, G., APFIM investigations on quasi-binary hypoeutectic NiAl–Re alloys, Mater. Sci. Eng. A, 2003, vol. 353, nos. 1–2, pp. 80–86. doi 10.1016/S0921-5093(02)00671-8

    Article  Google Scholar 

  30. Ponomareva, A.V., Vekilov, Yu.Kh., and Abrikosov, I.A., Effect of Re content on elastic properties of B2 NiAl from ab initio calculations, J. Alloys Comp., 2014, vol. 586, no. 1, pp. 274–278. doi 10.1016/j.jallcom.2012.12.103

    Article  Google Scholar 

  31. Zheng, L., Xiao, C., and Zhang, G., Brittle fracture of gas turbine blade caused by the formation of primary ß- NiAl phase in Ni-base superalloy, Eng. Failure Anal., 2012, vol. 26, pp. 318–324. doi 10.1016/j.engfailanal.2012.07.014

    Article  Google Scholar 

  32. Bei, H. and George, E.P., Microstructures and mechanical properties of a directionally solidified NiAl–Mo eutectic alloy, Acta Mater., 2005, vol. 53, no. 1, pp. 69–77. doi 10.1016/j.actamat.2004.09.003

    Article  Google Scholar 

  33. Duarte, L.I., Leinenbach, C., Klotz, U.E., Marker, M.C.J., Richter, K.W., and Löffler, J.F., Experimental study of the FeAl–NiAl–TiAl section, Intermetallics, 2012, vol. 23, pp. 80–90. doi 10.1016/j.intermet.2011.12.007

    Article  Google Scholar 

  34. Milenkovic, S., Schneider, A., and Frommeyer, G., Constitutional and microstructural investigation of the pseudobinary NiAl–W system, Intermetallics, 2011, vol. 19, no. 3, pp. 342–349. doi 10.1016/j.intermet.2010.10.019

    Article  Google Scholar 

  35. Kolobov, Yu.R., Kablov, E.N., and Kozlov, E.V., Struktura i svoystva intermetallidnykh materialov s nanofaznym uprochneniem (Structure and Properties of Intermetallic Materials with Nanophase Hardening), Moscow: Izd. MISiS, 2008.

    Google Scholar 

  36. Jozwik, P., Polkowski, W., and Bojar, Z., Applications of Ni3Al based intermetallic alloys: Current stage and potential perceptivities, Materials, 2015, vol. 8, no. 5, pp. 2537–2568. doi 10.3390/ma8052537

    Article  Google Scholar 

  37. Gleeson, B.M. and Sordelet, D.J., Pt metal modified γ-Ni + γ’-Ni3Al alloy compositions for high temperature degradation resistant structural alloys, USPatent 8 821 654, 2014.

  38. Povarova, K.B., Kazanskaya, N.K., Drozdov, A.A., Bazyleva, O.A., Kostina, M.V., Antonova, A.V., and Morozov, A.E., Influence of rare-earth metals on the high-temperature strength of Ni3Al-based alloys, Russ. Metall., 2011, no. 1, pp. 47–54. doi 10.1134/S0036029511010137

    Article  Google Scholar 

  39. Kablov, E.N., Buntushkin, V.P., Povarova, K.B., Bazyleva, O.A., Morozova, G.I., and Kazanskaya, N.K., Light low-alloy high-temperature materials based on the intermetallide Ni3Al, Russ. Metall., 1999, no. 1, pp. 69–75.

    Google Scholar 

  40. Povarova, K.B., Kazanskaya, N.K., Drozdov, A.A., and Morozov, A.E., Rare-earth metals (REMs) in nickel aluminide-based alloys: I. Physicochemical laws of interaction in the Ni–Al-REM and NixAly-REM-AE (alloying element) systems, Russ. Metall., 2008, no. 1, pp. 46–51. doi 10.1134/S0036029508010096

    Article  Google Scholar 

  41. Karin, G., Luo, H., Feng, D., and Li, C., Ni3Al-based intermetallic alloys as a new type of high-temperature and wear-resistant materials, J. Iron Steel Res., 2007, vol. 14, no. 5, pp. 21–25. doi 10.1016/S1006-706X(08) 60045-X

    Article  Google Scholar 

  42. Povarova, K.B. and Bannykh, O.A., Analysis of approaches to producing heat-resistant superalloys and Ni3Al-based alloys (’-phase), Scientific Ideas of S.T. Kishkin and Contemporary Material Science: Proc. Int. Conf., Moscow: Izd. VIAM, 2006, pp. 11–21.

    Google Scholar 

  43. Wohlers, T.T., Wohlers Report 2014: 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report, Fort Collins, CO: Wohlers Associates, 2014.

    Google Scholar 

  44. Yadroitsev, I., Gusarov, A., Yadroitsava, I., and Smurov, I., Single track formation in selective laser melting of metal powders, J. Mater. Process. Technol., 2010, vol. 210, no. 12, pp. 1624–1631. doi 10.1016/j.jmatprotec.2010.05.010

    Article  Google Scholar 

  45. Sulavik, Ch., Portnoy, M., and Waller T., 3D printing and the new shape of industrial manufacturing, New York: Pricewaterhouse Coopers LLP, 2014, pp. 1–18.

    Google Scholar 

  46. Gibson, I., Rosen, D.W., and Stucker, B., Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, New York: Springer, 2010.

    Book  Google Scholar 

  47. Yadroitsev, I. and Smurov, I., Selective laser melting technology: From the single laser melted track stability to 3D parts of complex shape, Phys. Proc., 2010, vol. 5, no. B, pp. 551–560. doi 10.1016/j.phpro.2010.08.083

    Article  Google Scholar 

  48. Yadroitsev, I., Bertrand, Ph., Antonenkova, G., Grigoriev, S., and Smurov, I., Use of track/layer morphology to develop functional parts by selective laser melting, J. Laser Appl., 2013, vol. 25, no. 5, pp. 1–7. doi 10.2351/1.4811838

    Article  Google Scholar 

  49. Quigley, N. and Lyne, J.E., Development of a threedimensional printed, liquid-cooled nozzle for a hybrid rocket motor, J. Propuls. Power, 2014, vol. 30, no. 6, pp. 1726–1727. doi 10.2514/1.B35455

    Google Scholar 

  50. Buchbinder, D., Schleifenbaum, H., Heidrich, S., Meiners, W., and Bültmann. J., High power selective laser melting (HP SLM) of aluminum parts, Phys. Proc., 2011, vol. 12, no. A, pp. 271–278. doi 10.1016/j.phpro.2011.03.035

    Article  Google Scholar 

  51. Robinson, L. and Scott, J., Layers of complexity: Making the promises possible for additive manufacturing of metals, JOM, 2014, vol. 66, no. 11, pp. 2194–2207. doi 10.1007/s11837-014-1166-x

    Article  Google Scholar 

  52. Yadroitsev, I., Yadroitsava, I., Bertrand, P., and Smurov, I., Factor analysis of selective laser melting process parameters and geometrical characteristics of synthesized single tracks, Rapid Prototyping J., 2012, vol. 18, no. 3, pp. 201–208. org/doi 10.1108/13552541211218117

    Article  Google Scholar 

  53. Dewidar, M.M., Lim, J.K., and Dalgarno, K.W., A comparison between direct and indirect laser sintering of metals, J. Mater. Sci. Technol., 2008, vol. 24, no. 2, pp. 227–232.

    Google Scholar 

  54. Razumovskiy, V.I., Ruban, A.V., Razumovskii, I.M., Butrim, V.N., Lozovoi, A.Y., and Vekilov, Yu.Kh., The effect of alloying elements on grain boundary and bulk cohesion in aluminum alloys: An ab initio study, Scr. Mater., 2011, vol. 65, no. 10, pp. 926–929. doi 10.1016/j.scriptamat.2011.08.014

    Article  Google Scholar 

  55. Tsantrizos, P.G., Allaire, F., and Entezarian, M., Method of production of metal and ceramic powders by plasma atomization, USPatent 5 707 419, 1998.

  56. Liu, H., Science and Engineering of Droplets: Fundamentals and Applications, Norwich (USA): William Andrew Publ., 2000.

  57. Ashgriz N., Handbook of Atomization and Sprays: Theory and Applications, Springer, 2011. doi 10.1007/978-1-4419-7264-4

    Book  Google Scholar 

  58. Lohner, H., Czisch, C., Schreckenberg, P., Fritsching, U., and Bauckhage, K., Atomization of viscous melts, Atomiz. Sprays, 2005, vol. 15, no. 2, pp. 169–180. doi 10.1615/AtomizSpr.v15.i2.40

    Article  Google Scholar 

  59. Achelis, L., Sulatycki, K., Uhlenwinkel, V., and Mädler, L., Spray angle and particle size in the pressure gas atomization of tin and tin–copper alloys, Proc. PM2010 Powder Metallurgy World Congress, 2010, Florence (Italy).

    Google Scholar 

  60. Belov, A.F., New metallurgical processes as a way to improve the quality and efficiency of the use of metals, Metally, 1981, no. 3, pp. 4–9.

    Google Scholar 

  61. Garibov, G.S., Metallurgy of pellets as a way to improve the quality of gas turbine engines and efficiency of the use of metals, Gas Turbine Technol., 2004, no. 5, pp. 22–27.

    Google Scholar 

  62. Beresnev, A.G., Logunov, A.V., Logacheva, A.I., Bogdanova, T.G., and Logachev, A.V., High-temperature alloys produced using metallurgy of pellets, Aerospace Eng. Technol., 2008, vol. 2, pp. 35–40.

    Google Scholar 

  63. Logunov, A.V., Beresnev, A.G., and Logacheva, A.I., Problems and prospects of metallurgy of aerospace engineering, Dvigatel, 2008, vol. 2, no. 56, pp. 8–10.

    Google Scholar 

  64. Garibov, G.S., Prospective development of metallurgy of nickel alloy pellets at the present stage, Tekhnol. Legkikh Splavov, 1995, vol. 6, pp. 7–13.

    Google Scholar 

  65. Bobrovinitchii, G.S. and Filgueira, M., Centrifugal atomization of metals: Thermodynamics of the process, Mater. Sci. Forum, 2005, vols. 498–499, pp. 9–15. 10.4028/www.scientific.net/MSF.498-499.9

    Article  Google Scholar 

  66. Li, H., Tsakiropoulos, P., and Johnson, T., Centrifugal atomization of alloys, Key Eng. Mater., 2001, vols. 189–191, pp. 245–251. 10.4028/www.scientific.net/KEM.189-191.245

    Google Scholar 

  67. Zhong, Z.Y., Saka, H., Kim, T.H., Holm, E.A., Han, Y.F., and Xie, X.S., A simplified model for velocity and temperature evolution of alloy droplets in centrifugal atomisation and spray deposition, Mater. Sci. Forum, 2005, vols. 475–479, pp. 4261–4271. 10.4028/www.scientific. net/MSF.475-479.4261

    Google Scholar 

  68. Dunkley, J.J. and Aderhold, D., Centrifugal atomization of metal powders, Adv. Powder Metall. Particul. Mater., 2007, vol. 2, pp. 26–31.

    Google Scholar 

  69. Razumovskii, I.M., Bykov, Y.G., Beresnev, AG., Poklad, V.A., and Razumovskiy, V.I., Effect of the particle size of phase on the mechanical properties of Ni base superalloy, Adv. Mater. Res., 2011, vol. 278, pp. 96–101. 10.4028/www.scientific.net/AMR.278.96

    Article  Google Scholar 

  70. Eisen, W.B., Ferguson, B.L., German, R.M., Iacocca, R., Lee, P.W., Madan, D., Moyer, K., Sanderow, H., and Trudel, Y., ASM Handbook: Powder Metal Technologies and Applications, ASM International, 1990, vol. 7, pp. 97–101.

    Google Scholar 

  71. Hata, S., Hashimoto, T., Kuwano, N., and Oki, K., Microstructures of Ti50Al45Mo5 alloy powders produced by plasma rotating electrode process, J. Phase Equilibr., 2001, vol. 22, no. 4, pp. 386–393.

    Article  Google Scholar 

  72. Wosch, E., Rapid solidification of steel droplets in plasma rotating electrode process, Metal Powder Rep., 1997, vol. 51, no. 1, pp. 35–39. http://dx.doi.org/doi 10.1016/S0026-0657(97)87006-3

    Article  Google Scholar 

  73. Ozols, A., Sirkin, H.R., and Vicente, E.E., Segregation in Stellite powders produced by the plasma rotating electrode process, Mater. Sci. Eng. A, 1999, vol. 262, nos. 1–2, pp. 64–69. doi 10.1016/S0921- 5093(98)01021-1

    Article  Google Scholar 

  74. Sanin, V.N., Ikornikov, D.M., Andreev, D.E., and Yukhvid, V.I., Centrifugal SHS metallurgy of nickel aluminide based eutectic alloys, Russ. J. Non-Ferr. Metall., 2014, vol. 55, no. 6, pp. 613–619. doi 10.3103/S1067821214060212

    Article  Google Scholar 

  75. Sanin, V., Andreev, D., Ikornikov, D., and Yukhvid, V., Cast intermetallic alloys and composites based on them by combined centrifugal casting–SHS process, Open J. Met., 2013, vol. 3, pp. 12–24. org/doi 10.4236/ojmetal. 2013.32A2003

    Article  Google Scholar 

  76. Sanin, V., Andreev, D., Ikornikov, D., and Yukhvid, V., Cast intermetallic alloys by SHS under high gravity, Acta Phys. Polon. A, 2011, vol. 119, no. 2, pp. 331–335.

    Article  Google Scholar 

  77. Sanin, V.N., Andreev, D.E., Yukhvid, V.I., Deev, V.V., and Ospennikova, O.G., SHS technology for small scale production of superalloys, Abstr. IX Int. Symp. on SHS, Dijon (France), 2007, p. 191.

    Google Scholar 

  78. Alkan, M., Sonmez, M.S., Derin, B., Yücel, O., Andreev, D.E., Sanin, V.N., and Yukhvid, V.I., Production of Al–Co–Ni ternary alloys by the SHS method for use in nickel based superalloys manufacturing, High-Temp. Mater. Process., 2015, vol. 34, no. 3, pp. 275–283. doi 10.1515/htmp-2014-0052

    Google Scholar 

  79. Lei, W., Shen, J., Shang, Zh., and Fu, H., Microstructure evolution and enhancement of fracture toughness of NiAl–Cr(Mo)–(Hf,Dy) alloy with a small addition of Fe during heat treatment, Scr. Mater., 2014, vol. 89, pp. 1–4. doi 10.1016/j.scriptamat.2014.07.002

    Article  Google Scholar 

  80. Zhao, S., Shen, J., Wang, L., Du, Y., Xiong, Y., and Fu, H., Investigations on the microstructure and room temperature fracture toughness of directionally solidified NiAl–Cr(Mo) eutectic alloy, Intermetallics, 2015, vol. 57, no. 1, pp. 25–33. doi 10.1016/j.intermet. 2014.09.012

    Google Scholar 

  81. Wu, Sh., Wu, X., Wang, R., Liu, Q., and Gan, L., Effects of Ni vacancy, Ni antisite, Cr, and Pt on the third-order elastic constants and mechanical properties of NiAl, Intermetallics, 2014, vol. 55, pp. 108–117. doi 10.1016/j.intermet.2014.04.022

    Article  Google Scholar 

  82. Sheng, L.Y., Zhang, W., Guo, J.T., Zhou, L.Z., and Ye, H.Q., Microstructure evolution and mechanical properties’ improvement of NiAl–Cr(Mo)–Hf eutectic alloy during suction casting and subsequent HIP treatment, Intermetallics, 2009, vol. 17, no. 12, pp. 1115–1119. doi 10.1016/j.intermet.2009.05.003

    Article  Google Scholar 

  83. Sanin, V.N., Yukhvid, V.I., and Merzhanov, A.G., The influence of high-temperature melt infiltration under centrifugal forces on SHS processes in gasless systems, Int. J. Self-Propag. High-Temp. Synth., 2002, vol. 11, no. 1, pp. 31–44.

    Google Scholar 

  84. Sanin, V.N., Yukhvid, V.I., and Merzhanov, A.G., The effect of gravity on SHS in elemental and thermite systems, Abstr. IV Int. Workshop on Materials Processing at High Gravity, Clarkson University, Potsdam (NY, USA), 2000.

    Google Scholar 

  85. Sanin, V.N., Ikornikov, D.M., Andreev, D.E., Yukhvid, V. I., Levashov, E. A., and Pogozhev, Yu. S., Cast NiAl/Ni20Al3B6 composites by centrifugal SHS, Int. J. Self-Propag. High-Temp. Synth., 2014, vol. 23. no. 4, pp. 232–239. doi 10.3103/S1061386214040098

    Article  Google Scholar 

  86. Noebe, R.D., Bowman, R.R., and Nathal, M.V., Review of the physical and mechanical properties and potential applications of the B2 compound NiAl, NASA Technical Memorandum, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Pogozhev.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogozhev, Y.S., Sanin, V.N., Ikornikov, D.M. et al. NiAl-based electrodes by combined use of centrifugal SHS and induction remelting. Int. J Self-Propag. High-Temp. Synth. 25, 186–199 (2016). https://doi.org/10.3103/S1061386216030092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386216030092

Keywords

Navigation