Skip to main content
Log in

Application axicons in a large-aperture focusing system

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

We consider the application of axicons in large-aperture focusing systems with different polarization. The aim is to increase the longitudinal extent of the focal spot and decrease its transversal size. Unlike conventional circular diaphragms, supplementing a high-aperture lens with an axicon is more efficient from the energetic point of view. The gain is proportional to the area of the masked part of the lens. Using an axicon we reduce the size of the central light spot from 0.51λ to 0.3λ for radial polarization. When we deal with linear polarization, which is the case for most laser beams, it is possible to produce a light spot narrowed in one direction to 0.32λ. For circular and azimuthal polarization it is efficient to use spiral axicons for producing compact distributions. When a large-aperture lens is supplemented even with a “weak” converging axicon, the focal area gets the conic form whose vertex has a smaller transverse dimension than the focal spot of a single lens. By choosing the axicon parameters we can vary the extent and “sharpness” of the cone. Moreover, by adding vortex phase we can control the contribution of different components of the electromagnetic field in the core and vertex of the cone. It can be useful in interaction of the electromagnetic field with the materials that have selective sensitivity to either longitudinal or transverse components of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khonina, S.N., Ustinov, A.V., and Volotovsky, S.G., Fractional axicon as a new type of diffractive optical element with conical focal region, Precision Instrum. Mechanol., 2013, vol. 2, no. 4, pp. 132–143.

    Google Scholar 

  2. Koronkevich, V.P., Mikhaltsova, I.A., Churin, E.G., and Yurlov, Yu.I., Lensacon, Appl. Opt., 1993, vol. 34, no. 25, pp. 5761–5772.

    Article  Google Scholar 

  3. Quabis, S., Dorn, R., Eberler, M., Glockl, O., and Leuchs, G., Focusing light to a tighter spot, Opt. Commun., 2000, vol. 179, pp. 1–7.

    Article  Google Scholar 

  4. Youngworth, K.S. and Brown, T.G., Focusing of high numerical aperture cylindrical-vector beams, Opt. Express., 2000, vol. 7, pp. 77–87.

    Article  Google Scholar 

  5. Dorn, R., Quabis, S., and Leuchs, G., Sharper focus for a radially polarized light beam, Phys. Rev. Lett., 2003, vol. 91, p. 233901.

    Article  Google Scholar 

  6. Kozawa, Y. and Sato, S., Sharper focal spot formed by higher-order radially polarized laser beams, J. Opt. Soc. Am., Ser. A, 2007, vol. 24, p. 1793.

    Article  Google Scholar 

  7. Rao, L., Pu, J., Chen, Z., and Yei, P., Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens, Opt. Laser Technol., 2009, vol. 41, pp. 241–246.

    Article  Google Scholar 

  8. Kotlyar, V.V. and Stafeev, S.S., Modeling the sharp focus of a radially polarized laser mode using a conical and a binary microaxicon, JOSA, Ser. B, 2010, vol. 27, no. 10, pp. 1991–1997.

    Article  Google Scholar 

  9. Kalosha, V.P. and Golub, I., Toward the subdiffraction focusing limit of optical superresolution, Opt. Lett., 2007, vol. 32, pp. 3540–3542.

    Article  Google Scholar 

  10. Davidson, N. and Bokor, N., High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens, Opt. Lett., 2004, vol. 29, pp. 1318–1320.

    Article  Google Scholar 

  11. Stadler, J., Stanciu, C., Stupperich, C., and Meixner, A.J., Tighter focusing with a parabolic mirror, Opt. Lett., 2008, vol. 33, no. 7, pp. 681–683.

    Article  Google Scholar 

  12. Zhan, Q., Cylindrical vector beams: from mathematical concepts to applications, Adv. Opt. Photon., 2009, vol. 1, pp. 1–57.

    Article  Google Scholar 

  13. Wang, H., Shi, L., Lukyanchuk, B., Sheppard, C., and Chong, C.T., Creation of a needle of longitudinally polarized light in vacuum using binary optics, Nature Photon., 2008, vol. 2, pp. 501–505.

    Article  Google Scholar 

  14. Sick, B., Hecht, B., and Novotny, L., Orientational imaging of single molecules by annular illumination, Phys. Rev. Lett., 2000, vol. 85, pp. 4482–4485.

    Article  Google Scholar 

  15. Novotny, L., Beversluis, M.R., Youngworth, K.S., and Brown, T.G., Longitudinal field modes probed by single molecules, Phys. Rev. Lett., 2001, vol. 86, pp. 5251–5254.

    Article  Google Scholar 

  16. Zhan, Q. and Leger, J.R., Focus shaping using cylindrical vector beams, Opt. Express., 2002, vol. 10, no. 7, pp. 324–331.

    Article  Google Scholar 

  17. Kawauchi, H., Yonezawa, K., Kozawa, Y., and Sato, S., Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam, Opt. Lett., 2007, vol. 32, p. 1839.

    Article  Google Scholar 

  18. Romea, R.D. and Kimura, W.D., Modeling of inverse Cherenkov laser acceleration with axicon laser beam focusing, Phys. Rev., Ser. D, 1990, vol. 42, no. 5, p. 1807.

    Article  Google Scholar 

  19. Gupta, D.N., Kant, N., Kim, D.E., and Suk, H., Electron acceleration to GeV energy by a radially polarized laser, Phys. Lett., Ser. A, 2007, vol. 368, pp. 402–407.

    Article  Google Scholar 

  20. Beversluis, M.R., Novotny, L., and Stranick, S.J., Programmable vector point-spread function engineering, Opt. Express., 2006, vol. 14, pp. 2650–2656.

    Article  Google Scholar 

  21. Yirmiyahu, Y., Niv, A., Biener, G., Kleiner, V., and Hasman, E., Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures, Opt. Express., 2007, vol. 15, no. 20, pp. 13404–13414.

    Article  Google Scholar 

  22. Xie, X.S. and Dunn, R.C., Probing single molecule dynamics, Science, 1994, vol. 265, pp. 361–364.

    Article  Google Scholar 

  23. Khonina, S.N., Kotlyar, V.V., Soifer, V.A., Shinkaryev, M.V., and Uspleniev, G.V., Trochoson, Opt. Commun., 1992, vol. 91, no. 3–4, pp. 158–162.

    Article  Google Scholar 

  24. Khonina, S.N., Kotlyar, V.V., Skidanov, R.V., Soifer, V.A., Jefimovs, K., Simonen, J., and Turunen, J., Rotation of microparticles with Bessel beams generated by diffractive elements, J. Mod. Opt., 2004, vol. 51, no. 14, pp. 2167–2184.

    Article  MATH  Google Scholar 

  25. Zhan, Q., Properties of circularly polarized vortex beams, Opt. Lett., 2006, vol. 31, no. 7, pp. 867–869.

    Article  Google Scholar 

  26. Khonina, S.N., Kazanskiy, N.L., and Volotovsky, S.G., Influence of vortex transmission phase function on intensity distribution in the focal area of high-aperture focusing system, Opt. Mem. Neural Networks (Inform. Opt.), 2011, vol. 20, no. 1, pp. 23–42.

    Article  Google Scholar 

  27. Grosjean, T. and Courjon, D., Photopolymers as vectorial sensors of the electric eld, Opt. Express., 2006, vol. 14, no. 6, pp. 2203–2210.

    Article  Google Scholar 

  28. Goodman, J.W., Introduction to Fourier Optics, New York: McGraw-Hill Book Company, Inc., 1968, p. 441.

    Google Scholar 

  29. Durnin, J., Exact solutions for nondiffracting beams, I: The scalar theory, J. Opt. Soc. Am., Ser. A, 1987, vol. 4, no. 4, pp. 651–654.

    Article  Google Scholar 

  30. McLeod, J.H., The axicon: a new type of optical element, J. Opt. Soc. Am., 1954, vol. 44, pp. 592–597.

    Article  Google Scholar 

  31. Fedotovsky, A. and Lehovec, H., Optical filter design for annular imaging, Appl. Opt., 1974, vol. 13, no. 12, pp. 2919–2923.

    Article  Google Scholar 

  32. Richards, B. and Wolf, E., Electromagnetic diffraction in optical systems, II: Structure of the image eld in an aplanatic system, Proc. Royal Soc., Ser. A, 1959, vol. 253, pp. 358–379.

    Article  MATH  Google Scholar 

  33. Helseth, L.E., Optical vortices in focal regions, Opt. Commun., 2004, vol. 229, pp. 85–91.

    Article  Google Scholar 

  34. Wang, H. and Gan, F., High focal depth with a pure-phase apodizer, Appl. Opt., 2001, vol. 40, no. 31, pp. 5658–5662.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Khonina.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khonina, S.N., Volotovsky, S.G. Application axicons in a large-aperture focusing system. Opt. Mem. Neural Networks 23, 201–217 (2014). https://doi.org/10.3103/S1060992X14040043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X14040043

Keywords

Navigation