Skip to main content
Log in

Apparatus for Physical Modeling of the Electroseismic Effect of the First Kind

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

The paper describes a modified apparatus for physically modeling the electroseismic effect of the first kind in rocks. The apparatus makes it possible to simulate the effect when a rock sample is exposed to an electric field with and without current in the sample. Two methods can be used for measuring changes in the acoustic field propagation velocity. The first method excites a pulsed acoustic field and measures the time it takes for the field to propagate from the source to the receiver; the second measures the phase modulation of a sinusoidal acoustic field when the sample is exposed to an electric field. The first method has two modifications: in the first, only an electric field without an active current component is generated in a sample; in the second, both an electric field and an active current component are generated. The apparatus includes a signal generator that excites coherent electric and acoustic fields in rock samples. Field coherence makes it possible to apply an interference-immune phase method for measuring the velocity of a sinusoidal acoustic field and to decrease the sensitivity threshold for a change in velocity from 0.2 to 0.02%. The authors present results of modeling the effect using saltwater-saturated limestone and sandstone samples (four each) with a mineralization factor of 1%. When the electric field was switched on, all samples demonstrated an approximately 0.2% decrease in acoustic field velocity. In the 2–200 kHz frequency range, the velocity decrease does not depend on frequency for all limestone and sandstone samples. It is shown that the modified apparatus can reliably detect the electroseismic effect without a current in a sample, despite the fact that its value exceeds the sensitivity threshold by only 20–25 dB. Field coherence makes it possible to measure the relaxation time of the acoustic field velocity after an electric field without a current in a sample is switched on and off. The authors demonstrate that after the electric field is switched on, the relaxation time of the acoustic field velocity does not exceed 2 ms, and after it is switched off, this value is 10–20 ms. The relaxation time difference can be used to assess the nonlinearity of the electroseismic effect of the first kind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Avagimov, A.A., Zeigarnik, V.A., and Okunev, V.I., Dynamics of energy exchange in model samples subjected to elastic and electromagnetic impacts, Izv., Phys. Solid Earth, 2011, vol. 47, no. 10, pp. 919–925.

    Article  Google Scholar 

  2. Ageeva, O.A., Use of seismoelectric transformations in rocks for predicting character of pore space saturation, Geofizika, 2008, no. 1, pp. 16–21.

  3. Adushkin, V.V., Kapustyan, N.K., and Spungin, V.G., Registration of the electroseismic effect in natural conditions, Dokl. Earth Sci., 2002, vol. 385A, no. 6, pp. 684–687.

    Google Scholar 

  4. Antsiferov, M.S., Electroseismic effect, Dokl. Akad. Nauk SSSR, 1962, vol. 144, no. 6, pp. 1295–1297.

    Google Scholar 

  5. Bogomolov, L.M., Search for new approaches to explain mechanisms connecting seismicity and electromagnetic effects, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 2013, no. 3, pp. 12–18.

  6. Bogomolov, L.M., Il’ichev, P.V., Zakupin, A.S., Novikov, V.A., and Okunev, V.I., Acoustic emission response of rocks to electric power action as seismic-electric effect manifestation, Ann. Geophys., 2004, vol. 47, no. 11, pp. 65–72.

    Google Scholar 

  7. Chelidze, T., De Rubeis, V., Matcharshvili, T, and Tosi, P., Influence of strong electromagnetic discharges on the dynamic of earthquakes time distribution in the Bishkek test area (Central Asia), Ann. Geophys., 2006, vol. 49, nos. 4–5, pp. 961–975.

    Google Scholar 

  8. Dorovsky, V.N. and Dorovsky, S.V., An electromagnetoacoustic method of measuring electric conductivity and ζ-potential, Russ. Geol. Geophys., 2009, vol. 50, no. 6, pp. 572–578.

    Article  Google Scholar 

  9. Dorovskii, V.N., Dorovskii, S.V., and Blokhin, A.M., On the possibilities of electrical survey when studying stability of water-oil layered systems, Geol. Geofiz., 2006, vol. 46, no. 11, pp. 1185–1191.

    Google Scholar 

  10. Fizicheskie svoistva gornykh porod i poleznykh iskopaemykh. Spravochnik geofizika (Physical Properties of Rocks and Mineral Resources: A Handbook for Geophysicists), Dortman, N.B., Ed., Moscow: Nedra, 1984. Frenkel’, Ya.I., On the theory of seismic and seismoelectric phenomena in moist soil, Izv. Akad. Nauk SSSR. Ser. Geogr. Geofiz., 1944, vol. 8, no. 4, pp. 133–150.

  11. Gavrilov, V.A., Bogomolov, L.M., and Zakupin, A.S., Comparison of the geoacoustic measurements in boreholes with the data of laboratory and in-situ experiments on electromagnetic excitation of rocks, Izv., Phys. Solid Earth, 2011, vol. 47, no. 11, pp. 1009–1019.

    Article  Google Scholar 

  12. Kulikov, V.A., Manshtein, A.K., Nefedkin, Yu.A., Podberezhnyi, M.Yu., and Sibiryakov, E.B., Electroseismic activity of loose porous rocks, in Trudy shkoly-seminara “Fizika neftyanogo plasta” (Physics of the Oil Reservoir: Proceedings of the Workshop-Seminar), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2002, pp. 95–101.

  13. Kuznetsov, A.N., Sokolova, I.P., Moroz, I.P., Kobzova, V.M., and Sheremeta, O.V., General characterization of the seismoelectric effects of the first and second kinds in the Saratov Zavolzh’e region, the Dnieper-Donets basin, and Western Siberia, Izv., Phys. Solid Earth, 2007, vol. 43, no. 4, pp. 309–313.

    Article  Google Scholar 

  14. Kuznetsov, A.N., Klyuchkin, V.N., Kharin, E.P., and Khon’kina, V.A., Use of first-type seismoelectric effect for exploration purposes, based on the results of laboratory studies of natural samples (deep well cores), Geofiz. Vestn., 2008, no. 11, pp. 48–52.

  15. Lapshin, V.B., Patonin, A.V., Ponomarev, A.V., Potanina, M.G., Smirnov, V.B., and Stroganova, S.M., Initiation of acoustic emission in fluid-saturated sandstone samples, Dokl. Earth Sci., 2016, vol. 469, no. 1, pp. 705–709.

    Article  Google Scholar 

  16. Maibuk, Z.-Yu.Ya., A trigger mechanism of nonlinear mechanoelectric conversions in mineralized faults, Izv., Phys. Solid Earth, 2006, vol. 42, no. 10, pp. 838–849.

    Article  Google Scholar 

  17. Manshtein, A.K., Kulikov, V.A., Epov, M.I., and Nefedkin, Yu.A., Change in seismic velocities in the direct current field, Geol. Geofiz., 1999, vol. 40, no. 3, pp. 465–473.

    Google Scholar 

  18. Manshtein, A.K., Nesterova, G.V., Filatov, V.V., and Saeva, O.P., On estimation of first-type seismoelectric effect, Tekhnol. Seismorazved., 2013, no. 4, pp. 81–88.

  19. Panteleev, I.A., Mubassarova, V.A., Damaskinskaya, E.E., Bogomolov, L.M., and Naimark, O.B., Influence of weak electrical field on spatiotemporal dynamics of acoustical emission at uniaxial pressure of granite, in Triggernye effekty v geosistemakh (Trigger Effects in Geosystems), Adush-kin, V.V. and Kocharyan, G.G., Eds., Moscow: GEOS, 2015, pp. 244–252.

  20. Podberezhnyi, M.Yu. and Nefedkin, Yu.A., Electroseismic phenomena in fluid-saturated rocks, Ros. Geofiz. Zh., 2006, nos. 43–44, pp. 103–108.

  21. Podberezhnyi, M.Yu. and Kulikov, V.A., Variations in velocities of longitudinal waves traveling in naturally occurring rocks under the effect of direct electrical current, Tekhnol. Seismorazved., 2011, no. 4, pp. 83–87.

  22. Potapov, O.A., Lizun, S.A., and Kondrat, V.F., Osnovy seismoelektrorazvedki (Fundamentals of Seismoelectric Survey), Moscow: Nedra, 1995.

  23. Savinov, V.N., Akhmatov, E.V., Moiseeva, T.V., Byval’tsev, D.V., Gilyova, O.A., and Zalalova, Yu.M., Characteristics of seismoelectric effect in rocks of reservoir horizons, Geol., Geofiz. Razrab. Neft. Gaz. Mestorozhd., 2014, no. 7, pp. 73–80.

  24. Sobotka, J., DC-induced acoustic emission in saturated sand models of sedimentary rock, Acta Geophys., 2010, vol. 58, no. 1, pp. 163–172.

    Article  Google Scholar 

  25. Svetov, B.S., Osnovy geoelektriki (Fundamentals of Geoelectrics), Moscow: LKI, 2008.

  26. Sychev, V.N., Bogomolov, L.M., Rybin, A.K., and Sycheva, N.A., Influence of electromagnetic soundings of the crust on seismic regime of the Bishkek geodynamic test area, in Triggernye effekty v geosistemakh (Trigger Effects in Geosystems), Adushkin, V.V. and Kocharyan, G.G., Eds., Moscow: GEOS, 2010, pp. 316–326.

  27. Tarasov, N.T., Tarasova, N.V., Avagimov, A.A., and Zeigarnik, V.A., Change of seismicity of the Bishkek geodynamic test area under electromagnetic effects, Geol. Geofiz., 2001, vol. 42, no. 10, pp. 1641–1649.

    Google Scholar 

  28. Thompson, H., Hornbostel, S., and Burns, J., Field tests of electroseismic hydrocarbon detection, Geophysics, 2007, vol. 72, no. 1, pp. 1–9.

    Article  Google Scholar 

  29. Yavorskii, B.M. and Detlaf, A.A., Spravochnik po fizike dlya inzhenerov i studentov VUZov (A Handbook on Physics for Engineers and High Education Students), Moscow: Nauka, 1964.

  30. Zeigarnik, V.A. and Kliuchkin, V.N., Instrumentation for physical modeling of seismoelectric phenomena, Seism. Instrum., 2015, vol. 51, no. 3, pp. 219–228.

    Article  Google Scholar 

  31. Zhu, Z., Burns, R.D., and Toksoz, M.N., Electroseismic and seismoelectric measurements of rock samples in a water tank, Geophysics, 2008, vol. 73, no. 5, pp. 153–164.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Zeigarnik.

Additional information

Translated by A. Carpenter

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeigarnik, V.A., Klyuchkin, V.N. Apparatus for Physical Modeling of the Electroseismic Effect of the First Kind. Seism. Instr. 55, 1–9 (2019). https://doi.org/10.3103/S0747923919010134

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923919010134

Keywords:

Navigation