Skip to main content
Log in

Determination of Biconical Cavity Eigenfrequencies Using Method of Partial Intersecting Regions and Approximation by Rational Fractions

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The paper considers the problem of determining the eigenfrequencies of biconical cavity making it possible to simplify the eigenfrequency-based design of devices. We used the solving of the excitation problem for biconical cavity using the method of partial intersecting regions in combination with the collocation method. Based on the concept of the search of quasisolution for determining eigenfrequencies, it was proposed to apply the fractionally rational approximation of cavity response obtained as a result of solving the problem of resonator excitation. The efficiency of finding eigenfrequencies of biconical cavity was substantiated by using the fractionally rational approximation based on the chain fraction interpolation of cavity response calculated only at collocation points. Using the above approach, we have obtained the relationship of eigenfrequencies of azimuth-symmetric oscillations of biconical cavity as a function of the aperture angle, and the typing of lower azimuth-symmetric transverse electric modes of biconical cavity has been performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Cullen, “Millimeter-wave open-resonator techniques,” Infrared and Millimeter Waves10, 233 (1983).

    Google Scholar 

  2. M. N. Afsar, K. J. Button, “Millimeter-wave dielectric measurement of materials,” Proc. IEEE73, No. 1, 131 (1985). DOI: https://doi.org/10.1109/PROC.1985.13114.

    Article  Google Scholar 

  3. I. K. Kuzmichev, P. N. Melezhik, A. Ye. Poyedinchuk, “An open resonator for physical studies,” Int. J. Infrared Millimeter Waves27, No. 6, 857 (2006). DOI: https://doi.org/10.1007/s10762-006-9122-7.

    Article  Google Scholar 

  4. I. K. Kuzmichev, A. Yu. Popkov, “Resonant systems for measurement of electromagnetic properties of substances at V-band frequencies,” in: Emerging Microwave Technologies in Industrial, Agricultural, Medical and Food Processing (IntechOpen, London, 2018), Ch. 3, pp. 27–53. URI: https://www.intechopen.com/books/emerging-microwave-technologies-in-industrial-agricultural-medical-and-food-processing/resonant-systems-for-measurement-of-electromagnetic-properties-of-substances-at-v-band-frequencies.

    Google Scholar 

  5. T. Karpisz, B. Salski, P. Kopyt, J. Krupka, “Measurement of dielectrics from 20 to 50 GHz with a Fabry-Pérot open resonator,” IEEE Trans. Microwave Theory Tech.67, No. 5, 1901 (2019). DOI: https://doi.org/10.1109/TMTT.2019.2905549.

    Article  Google Scholar 

  6. Yu. V. Kovtun, I. B. Pinos, A. N. Ozerov, A. I. Skibenko, E. I. Skibenko, V. B. Yuferov, “Microwave device on the basis of a barrel resonator for determining the average density and the density profile in plasma formations,” Ukrainian J. Phys.60, No. 11, 1101 (2015). DOI: https://doi.org/10.15407/uipe60.11.1101.

    Article  Google Scholar 

  7. A. Rashidian, L. Shafai, D. Klymyshyn, C. Shafai, “A fast and efficient free-space dielectric measurement technique at mm-wave frequencies,” IEEE Antennas Wireless Propag. Lett.16, 2630 (2017). DOI: https://doi.org/10.1109/LAWP.2017.2737632.

    Article  Google Scholar 

  8. D. P. Burtovoi, V. L. Mironenko, A. I. Tereshchenko, “Application of open cylindrical evanescent-mode resonator for investigating the dielectric properties of matter,” Izv. Vyssh. Ucheb. Zaved, Radioelek.13, No. 9, 1085 (1970).

    Google Scholar 

  9. P. Nagenthiram, A. L. Cullen, “A microwave barrel resonator for permittivity measurements on dielectric rods,” Proc. IEEE62, No. 11, 1613 (1974). DOI: https://doi.org/10.1109/PROC.1974.9674.

    Article  Google Scholar 

  10. M. V. Andreev, O. O. Drobakhin, Ye. N. Privalov, D. Yu. Saltykov, “Measurement of dielectric material properties using coupled biconical resonators,” Telecommun. Radio Eng.73, No. 11, 1017 (2014). DOI: https://doi.org/10.1615/TelecomRadEng.v73.i11.70.

    Article  Google Scholar 

  11. A. A. Alimov, A. A. Radionov, “The open limit biconical resonator calculation,” Antennas, No. 4, 40 (2015). URI: https://elibrary.ru/item.asp?id=23366163.

  12. B. Z. Katsenelenbaum, L. Mercader del Rio, M. Pereyaslavets, M. Sorolla Ayza, M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (IEE, London, 1998). DOI: https://doi.org/10.1049/PBEW044E.

    Book  Google Scholar 

  13. J. P. Van’t Hof, D. D. Stancil, “Eigenfrequencies of a truncated conical resonator via the classical and Wentzel-Kramers-Brillouin methods,” IEEE Trans. Microwave Theory Tech.56, No. 8, 1909 (2008). DOI: https://doi.org/10.1109/TMTT.2008.927408.

    Article  Google Scholar 

  14. D. B. Kuryliak, Z. T. Nazarchuk, O. B. Trishchuk, “Axially-symmetric TM-waves diffraction by sphere-conical cavity,” PIER B73, 1 (2017). DOI: https://doi.org/10.2528/PIERB16120904.

    Article  Google Scholar 

  15. D. B. Kuryliak, O. M. Sharabura, “Diffraction of axially-symmetric TM-wave from bi-cone formed by finite and semi-infinite shoulders,” PIER B68, 73 (2016). DOI: https://doi.org/10.2528/PIERB16041302.

    Article  Google Scholar 

  16. K. G. Savin, I. P. Golubeva, Yu. V. Prokopenko, “Calculation of frequency and power characteristics of the composite metal-dielectric resonator using the method of partial regions,” Radioelectron. Commun. Syst.59, No. 5, 229 (2016). DOI: https://doi.org/10.3103/S0735272716050058.

    Article  Google Scholar 

  17. I. G. Prokhoda, V. P. Chumachenko, “The method of partial intersecting domains for the investigation of waveguide-resonator systems having a complex shape,” Radiophys. Quantum Electron.16, 1219 (1973). DOI: https://doi.org/10.1007/BF01031224.

    Article  Google Scholar 

  18. R. H. W. Hoppe, Yu. A. Kuznetsov, “Overlapping domain decomposition methods with distributed Lagrange multipliers,” J. Numerical Math.9, No. 1, 285 (2001). DOI: https://doi.org/10.1515/JNMA.2001.285.

    MathSciNet  MATH  Google Scholar 

  19. O. O. Drobakhin, P. I. Zabolotnyy, Ye. N. Privalov, “Approximate calculation of eigenfrequencies of biconical microwave cavities,” Radioelectron. Commun. Syst.56, No. 3, 127 (2013). DOI: https://doi.org/10.3103/S0735272713030035.

    Article  Google Scholar 

  20. M. V. Andreev, O. O. Drobakhin, D. Yu. Saltykov, N. B. Gorev, I. F. Kodzhespirova, “Simple technique for biconical cavity eigenfrequency determination,” Radioelectron. Commun. Syst.60, No. 12, 555 (2017). DOI: https://doi.org/10.3103/S0735272717120056.

    Article  Google Scholar 

  21. M. V. Andreev, O. O. Drobakhin, D. Yu. Saltykov, “Determination of the resonance frequency and the Q-factor of a half-disk dielectric resonator using fractional rational approximation,” Radio Phys. Radio Astron.18, No. 4, 362 (2013). URI: http://rpra-iournal.org.ua/index.php/ra/article/view/1157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Andreev, O. O. Drobakhin or D. Yu. Saltykov.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional Information

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347019120033 with DOI: https://doi.org/10.20535/S0021347019120033.

Russian Text © The Author(s), 2019, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2019, Vol. 62, No. 12, pp. 737–749.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, M.V., Drobakhin, O.O., Saltykov, D.Y. et al. Determination of Biconical Cavity Eigenfrequencies Using Method of Partial Intersecting Regions and Approximation by Rational Fractions. Radioelectron.Commun.Syst. 62, 630–641 (2019). https://doi.org/10.3103/S0735272719120033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272719120033

Navigation