Skip to main content
Log in

Biorefinery Product and Energy Potential of Araucária angustifolia bark (BERTOL.) O. Kuntze

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

The objective of this study was to characterize the tree bark of Araucaria angustifolia, for estimate the energy potential of this biomass as a source of renewable energy and products from biorefineries. Studies have been carried out using thermal analysis (TGA-DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and dispersive energy spectroscopy (EDS) for thermochemical and morphological analysis. Through thermal analysis, it is possible to observe in A. angustifolia the thermal effects in the presence of air and nitrogen for a dry sample and its phases in view of the effects of temperature and mass loss. A calorific value measured around 12.23MJ/Kg was also seen, being able to consider this product as an alternative energy source and products such as maltol were identified indicating that substances from biorefineries are present in this biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Survey of Energy Resources/World Energy Council, London: WEC, 2013, p. 468.

  2. Atlas of Electric Energy in Brazil/National Electric Energy Agency, Brasilia: Aneel, 2008, p. 236.

  3. Castello, M.L., Dweck, J., and Aranda, D.A.G., J. Therm. Anal. Calorim., 2008, vol. 105, p. 737.

    Article  Google Scholar 

  4. Van Meerbeek, K., Muys, B., and Hermy, M., Renew. Sust. Energ. Rev., 2019, vol. 102, p. 139.

    Article  Google Scholar 

  5. Liu, H., Hong, R., Xiang, C., Wang, H., Li, Y., Xu, G., and Zhu, K., Process. Saf. Environ., 2020, vol. 141, p. 167.

    Article  CAS  Google Scholar 

  6. Kung, K.S., Thengane, S.K., Lim, C.J., Sokhansanj, S., and Ghoniem, A.F., Energ. Convers. Manage., 2020, vol. 218, p. 112924.

    Article  CAS  Google Scholar 

  7. Ngo, H.C., Chen, W.H., Singh, Y., and Gan, Y.Y., Chen, CY., and Show, P.L., Energ. Convers. Manage., 2020, vol. 209, p. 112634.

    Article  Google Scholar 

  8. Chen, W.H., Eng, C.F., Lin, Y.Y., and Bach, Q.V., Energ. Convers. Manage., 2020, vol. 221, p. 113165.

    Article  CAS  Google Scholar 

  9. Sobek, S. and Werle, S., Fuel., 2020, vol. 261, p. 116459.

    Article  CAS  Google Scholar 

  10. Font, R. and Willians, P.T., Thermo. Acta, 1995, vol. 250, p. 109.

    Article  CAS  Google Scholar 

  11. Wang, T., Liu, T., Ma, T., Li, L., Wang, Q., and Guo, C., Prog. Org. Coat., 2018.

  12. Bhalla, A., Bansal, N., Kumar, S., Bischoff, K.M., and Sani, R.K., Biores. Technol., 2013, vol. 128, p. 751.

    Article  CAS  Google Scholar 

  13. Ding, S., Biophys. J., 2010, vol. 98, no. 3, p. 210.

    Article  Google Scholar 

  14. Sakulkit, P., Palamanit, A., Dejchanchaiwong, R., and Reubroycharoen, P., J. Environ. Chem. Eng., 2020, p. 104561.

  15. Wang, K., Zhang, H., Chu, S., and Zha, Z., Chinese J. Chem. Eng., 2020, vol. 29, p. 375.

    Article  Google Scholar 

  16. Peralta, R.M., Koehnlein, E.A., Oliveira, R.F., Correa, V.G., Correa, R.C.G., Bertonha, L., and Ferreira, I.C.F.R., Trends Food. Sci. Tech., 2016, vol. 54, p. 85.

    Article  CAS  Google Scholar 

  17. Klein, R.M., Sellowia, 1960, vol. 12, p. 17.

    Google Scholar 

  18. Carvalho, P.E.R. and Colombo, EMBRAPA-CNPF, 1994, p. 640.

  19. Huber, G.W., Iborra, S., and Corma, A., Chem. Rev., 2006, vol. 106, p. 4044.

    Article  CAS  Google Scholar 

  20. Yang, H., Yan, R., Chen, H., Lee, D.H., and Zheng, C., Fuel., 2007, vol. 86, p. 1781.

    Article  CAS  Google Scholar 

  21. Wang, C., Deng, X., Xiang, W., and Yan, W., Biomass. Bioenerg., 2020, vol. 134, p. 105467.

    Article  Google Scholar 

  22. Kumar, A., Bhattacharya, T., Mozammil Hasnain, S.M., Kumar Nayak, A., and Hasnain, M.S., Mater. Sci. Energ. Technol., 2020, vol. 3, p. 905.

    CAS  Google Scholar 

  23. Kardas, D., Hercel, P., Polesek-Karczewska, S., and Wardach-Swiecicka, I., Energy, 2019, vol. 189, p. 116159.

    Article  CAS  Google Scholar 

  24. Venkateswara Rao, R., Venkateswarulu, P., Kasipathi, C., and SivaJyothi, S., Appl. Radiat. Isotopes, 2013, vol. 82, p. 211.

    Article  CAS  Google Scholar 

  25. Chen, J., Wu, L., and Wu, J., Chinese Chem. Lett., 2020, vol. 31, p. 2993.

    Article  CAS  Google Scholar 

  26. Lindsay, W.L., Chemical Balances in Soils, New York: Wiley–Interscience, 1979, p. 499.

    Google Scholar 

  27. Bouain, N., Krouk, G., Lacombe, B., and Rouached, H., Trends Plant. Sci., 2019, vol. 24, p. 542.

    Article  CAS  Google Scholar 

  28. Krapp, A., Curr. Opin. Plant. Biol., 2015, vol. 25, p. 115.

    Article  CAS  Google Scholar 

  29. Physiology and Determination of Crop Yield, Boote, K.J., Bennett, J.M., Sinclair, T.R., and Paulsen, G. M., Eds., Madison: ASA/CSSA/SSSA, 1994, ch. 11A, p. 285.

    Google Scholar 

  30. Chunmei, X., Liping, C., Song, C., Guang, C., Danying, W., and Xiufu, Z., Rice. Sci., 2020, vol. 27, no. 2, p. 162.

    Article  Google Scholar 

  31. Yan, G., Nikolic, M., Ye, M., Xiao, Z., and Liang, Y., J. Integr. Agric., 2018, vol. 17, no. 10, p. 2138.

    Article  CAS  Google Scholar 

  32. Vadstrup, M. and Madsen, T.V., Freshwat. Biol., 1995, vol. 34, p. 411.

    Article  CAS  Google Scholar 

  33. Hopkins, W.G., Introduction to Plant Physiology, New York: Wiley, 2000, 2nd ed., p. 512.

    Google Scholar 

  34. Silverstein, R.M., Bassler, G.C., and Morrill, T.C., Spectrometric Identification of Organic Compounds, New York: Wiley, 1991, 5th ed., ch. 3, p. 71.

    Google Scholar 

  35. Cardell, C. and Guerra, I., Trend. Anal. Chem., 2016, vol. 77, p. 156.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to gratefully acknowledge the São Paulo Research Foundation (FAPESP) (process no: 2018/03138-7) and Coordination for the Improvement of Higher Education Personnel (CAPES) for the financial support, São Paulo State University (UNESP Sorocaba- ICTS) for the opportunity to develop the project, and the Bioenergy, Biofuels, Climate and Effluents Group (BBCE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro C. Morais.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peres, C.B., Maia, A.A., Guandique, M.E. et al. Biorefinery Product and Energy Potential of Araucária angustifolia bark (BERTOL.) O. Kuntze. Solid Fuel Chem. 56, 59–66 (2022). https://doi.org/10.3103/S0361521922010050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521922010050

Keywords:

Navigation