Skip to main content
Log in

A Simulation Model of Hourly Dynamics of Organic-Matter Carbon in Ecograss Herbaceous Communities

  • Published:
Moscow University Soil Science Bulletin Aims and scope

Abstract

An algorithm has been developed for the simulation model of carbon behavior in herbaceous communities of various types, both autonomous and as a part of complex phytocenoses. The influence of external factors is taken into account, such as solar radiation, precipitation, air temperature, clouds, and wind speed. The dynamics of soil moisture level and temperature are reproduced. The algorithm can be modified, depending on the discreteness of consideration of the simulated processes. The algorithm is tested in modeling the dynamics of the phytomass of a community of ground elder (Aegopodium podagraria L.) that is dominant in the herbaceous cover of the ground elder oak grove on dark-gray forest soil. The EcoGrass model is used to conduct numerical experiments to study the impact of the potential global climate change and consumption of phytomass by animals on the productivity of this community. Threshold values of influence factors have been determined upon reaching which the normal functioning of the community is disrupted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Bazilevich, N.I., Grebenshchikov, O.S., and Tishkov, A.A., Geograficheskie zakonomernosti struktury i funktsionirovaniya ekosistem (Ecosystems Structure and Functioning: Geographical Regularities), Moscow, 1986.

  2. Vasil’eva, I.N., Materials characterizing soils physical properties of Tellermanovskoe experimental forestry, Tr. Inst. Lesa Akad. Nauk SSSR, 1954, vol. 15, pp. 195–328.

    Google Scholar 

  3. Gil’manov, T.G., Matematicheskoe modelirovanie biogeokhimicheskikh tsiklov v travyanykh ekosistemakh (Mathematical Simulation for Biogeochemical Cycles in Grass Ecosystems), Moscow, 1978.

    Google Scholar 

  4. Zamolodchikov, D.G., Carbon reserve in forest ecosystems: systems for estimating and predicting, Ustoich. Lesopol’zovanie, 2011, no. 4 (29).

  5. Zonn, S.V., Pochvennaya vlaga i lesnye nasazhdeniya (Soil Moisture and Forests), Moscow, USSR Acad. Sci., 1959.

  6. Lakher, W., Ökologie der Pflanzen, Stuttgart: Ulmer, 1973.

    Google Scholar 

  7. Le Chong Kuk, Grass cover in Aegopodium oak forest: Structure and productivity, Byull. Mosk. O-va Ispyt. Prir., 1979, no. 3.

  8. Mamikhin, S.V., Mathematical simulation for season and multiyear dynamics of organic matter carbon in the atmosphere-plant-soil system, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 1987.

  9. Mamikhin, S.V., Dinamika ugleroda organicheskogo veshchestva i radionuklidov v nazemnykh ekosistemakh (imitatsionnoe modelirovanie i primenenie informatsionnykh tekhnologii) (Dynamics of Organic Matter Carbon and Radionuclides in Onground Ecosystems: Imitation Simulation and Information Technologies Application), Moscow: MSU, 2003.

  10. Mitina, M.B., Assimilation activity of seasonal synusium dominants in Aegopodium oak forest at forest-steppe zone, in Mekhanizmy vzaimodeistviya rastenii v biogeotsenozakh taigi (Interaction Mechanism for Plants at Taiga Biogeocenosises), Leningrad, 1969.

    Google Scholar 

  11. Nikolaev, V.V., Prirodnye kormovye resursy Turkmenistana (Nature Food Resources of Turkmenistan), Ashkhabad: Ylym, 1972.

  12. Novochikhin, E.P., Biogeochemical cycles control, Vopr. Kibernet., 1981, no. 69, pp. 169–179.

  13. Sidorovich, E.A., Gil’manov, T.G., and Chestnykh, O.V., Production process for wood sorrel spruce forest ecosystems: experience for mathematical model generation, Dokl. Akad. Nauk BSSR, 1986, vol. 30, no. 11.

  14. Smirnova, O.V., Aegopodium podagraria, in Biologicheskaya flora Moskovskoi oblasti (Biological Flora of Moscow Oblast), Rabotnov, T.A., Ed., Moscow, 1974, issue 1.

  15. Tarko, A.M., Mathematical simulation for carbon global biogeochemical cycle, in Matematicheskie modeli v ekologii i genetike (Mathematical Models in Ecology and Genetics), Moscow, 1981.

    Google Scholar 

  16. Titlyanova, A.A., Kudryashova, S.Ya., Kosykh, N.P., et al., Data bases “Organic carbon” and “Organic matter reserves in Siberian ecosystems” as a mean for estimating the carbon balance, its simulation and predicting by using the geoinformation base, Vychisl. Tekhnol., 2007, vol. 12, special issue 2.

    Google Scholar 

  17. Tikhomirov, F.A. and Mamikhin, S.V., C-14 migration in leafed forests at sod-podzolic soils: Mathematical model, Ekologiya, 1983, no. 3.

  18. Chetverikov, A.N., Forest biogeocenosises simulation, in Matematicheskoe modelirovanie biogeotsenoticheskikh protsessov (Mathematical Simulation for Biogeocenotical Processes), Moscow, 1985.

    Google Scholar 

  19. Gilada, E., von Hardenberg, J., Provenzale, A., et al., Mathematical model of plants as ecosystem engineers, J. Theor. Biol., 2007, vol. 244, no. 4, pp. 680–691.

    Article  Google Scholar 

  20. Hoyer-Leitzel, A. and Iams, S., Impulsive fire disturbance in a savanna model: Tree-grass coexistence states, multiple stable system states, and resilience, Bull. Math. Biol., 2021, vol. 83, no. 1.

  21. Grassland Simulation Model, Innis, G.S., Ed., New York, 1978.

    Google Scholar 

  22. Komarov, A.S., Chertov, O.G., Zudin, S.L., et al., EFIMOD 2–A model of growth and elements cycling of boreal forest ecosystems, Ecol. Model., 2003, vol. 170, nos. 2–3, pp. 373–392.

    Article  Google Scholar 

  23. Lazzarotto, P., Calanca, P., and Fuhrer, J., Dynamics of grass-clover mixtures–An analysis of the response to management with the PROductive GRASsland Simulator (PROGRASS), Ecol. Modell., 2009, vol. 220, no. 5, pp. 703–724.

    Article  Google Scholar 

  24. Levine, E.R., Ranson, K.J., Smith, J.A., et al., Forest ecosystem dynamics: linking forest succession, soil process and radiation models, Ecol. Modell., 1993, vol. 65, nos. 3–4, pp. 199–219.

    Article  Google Scholar 

  25. Moulina, T., Perasso, A., and Gillet, F., Modelling vegetation dynamics in managed grasslands: Responses to drivers depend on species richness, Ecol. Modell., 2018, vol. 374, pp. 22–36.

    Article  Google Scholar 

  26. Satchell, J.E., Biomass model of mixed oak forest, United Kingdom, in Modeling Forest Ecosystems, Oak Ridge: Oak Ridge National Laboratory, 1973.

    Google Scholar 

  27. Shiyomi, M., Grassland management models, Jpn. Agric. Res. Q., 1988, vol. 22, no. 3.

  28. Yatat, V., Dumont, Y., Tewa, J., et al., Mathematical analysis of a size structured tree-grass competition model for savanna ecosystems, Biomath, 2014, vol. 3, p. 1404212.

    Article  Google Scholar 

Download references

Funding

This study was carried out as a part of Research and Technological Development project no. АААА-А21-121012290189-8 conducted in the framework of a state order sponsored by Interdisciplinary Academic School at Moscow State University “Future of the Planet and Global Changes in the Environment.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Mamikhin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kuznetsova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamikhin, S.V., Badawy, W.M., Lipatov, D.N. et al. A Simulation Model of Hourly Dynamics of Organic-Matter Carbon in Ecograss Herbaceous Communities. Moscow Univ. Soil Sci. Bull. 77, 161–168 (2022). https://doi.org/10.3103/S0147687422030085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0147687422030085

Keywords:

Navigation