Skip to main content
Log in

A Method for Determining the Sulfur Isotope Composition in Ultramafic–Mafic Rocks with a Low Sulfur Content

  • Published:
Moscow University Geology Bulletin Aims and scope Submit manuscript

Abstract

A method of sample decompounding and silver sulfide precipitation for determination of the sulfur isotope composition using mass-spectrometry has been tested and improved. The analytics and methodology of preparing test samples for analysis are described and task variations are indicated. The validity of the developed method of sample preparation was verified by a comparative analysis of various methods in three laboratories using internationally certified rock standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Beaudoin, G., Taylor, B., Rumbleiii, D., and Thiemens, M., Variations in the sulfur isotope composition of troilite from the Canon Diablo iron meteorite, Geochim. Cosmochim. Acta, 1994, vol. 58, no. 19, pp. 4253–4255.

    Article  ADS  CAS  Google Scholar 

  2. Bekker, A., Barley, M.E., Fiorentini, M.L., et al., Atmospheric sulfur in Archean komatiite-hosted nickel deposits, Science, 2009, vol. 326, pp. 1086–1089.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Canfield, D.E., Raiswell, R., Westrich, J.T., et al., The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales, Chem. Geol., 1986, vol. 54, pp. 149–155.

    Article  ADS  CAS  Google Scholar 

  4. Ding, X., Ripley, E.M., Shirey, S.B., and Li, C., Os, Nd, O and S isotope constraints on country rock contamination in the conduit-related Eagle Cu–Ni–(PGE) deposit, Midcontinent rift system, Upper Michigan, Geochim. Cosmochim. Acta, 2012a, vol. 89, pp. 10–30.

    Article  ADS  CAS  Google Scholar 

  5. Ding, X., Ripley, E.M., and Li, C., PGE geochemistry of the Eagle Ni—Cu–(PGE) deposit, Upper Michigan: Constraints on ore genesis in a dynamic magma conduit, Miner. Deposita, 2012b, vol. 47, pp. 89–104.

    Article  ADS  CAS  Google Scholar 

  6. Duan, J., Li, C., Zhuangzhi, Q., Jiangang, J., et al., Multiple S isotopes, zircon Hf isotopes, whole-rock Sr–Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni–Cu–PGE deposit, NW China, Miner. Deposita, 2016, vol. 51, pp. 557–574.

    Article  ADS  CAS  Google Scholar 

  7. Fiorentini, M.L., Beresford, S., Barley, M., et al., District to camp controls on the genesis of komatiite-hosted nickel sulfide deposits, Agnew-Wiluna greenstone belt, Western Australia: Insights from the multiple sulfur isotopes, Econ. Geol., 2012a, vol. 107, pp. 781–796.

    Article  CAS  Google Scholar 

  8. Fiorentini, M.L., Bekker, A., Rouxel, O., et al., Multiple sulfur and iron isotope composition of magmatic Ni–Cu–(PGE) sulfide mineralization from eastern Botswana, Econ. Geol., 2012b, vol. 107, pp. 105–116.

    Article  CAS  Google Scholar 

  9. Godlevskii, M.N., Trappy i rudonosnye intruzii Noril’skogo raiona (Traps and Ore-Bearing Intrusions of the Norilsk Region), Moscow: Gosgeoltekhizdat, 1959.

  10. Grinenko, L.N., Sources of sulfur of the nickeliferous and barren gabbrodolerite intrusions of the northwest Siberian platform, Int. Geol. Rev., 1985, vol. 27, pp. 695–708.

    Article  Google Scholar 

  11. Gros, M., Lorand, J., and Bezos, A., Determination of total sulfur contents in the international rock reference material SY-2 and other mafic and ultramafic rocks using an improved scheme of combustion/iodometric titration, Geostand. Geoanal. Res., 2005, vol. 29, no. 1, pp. 123–130.

    Article  CAS  Google Scholar 

  12. Gupta, J., Determination of microgram amounts of total sulfur in rocks, rapid and accurate analysis by a combustion method, Anal. Chem., 1963, vol. 35, no. 12, pp. 1971–1973.

    Article  Google Scholar 

  13. Hulston, J.R. and Thode, H.G., Variations in the S33, S34, and S36 contents of meteorites and their relation to chemical and nuclear effects, J. Geophys. Res., 1965, vol. 70, pp. 3475–3484.

    Article  ADS  CAS  Google Scholar 

  14. Krivolutskaya, N.A., PGE-Cu-Ni Norilsk deposits and Siberian traps: Genetic relationships, in Advances in Geochemistry and Analytical Chemistry. Spec. Publ. to the 75th Anni. Vernadsky Inst. Geochem. Anal. Chem. Russ. Acad. Sci., Amsterdam, Springer, 2023, pp. 73–99.

    Google Scholar 

  15. Labidi, J., Cartigny, P., Birck, J.L., et al., Determination of multiple sulfur isotopes in glasses: A reappraisal of the MORB δ34S, Chem. Geol., 2012, vol. 334, pp. 189–198.

    Article  ADS  CAS  Google Scholar 

  16. LaFlamme, C., Martin, L., Jeon, H., et al., In situ multiple sulfur isotope analysis by SIMS of pyrite, chalcopyrite, pyrrhotite, and pentlandite to refine magmatic ore genetic models, Chem. Geol., 2016, vol. 444, pp. 1–15.

    Article  ADS  CAS  Google Scholar 

  17. Lorand, J., Abundance and distribution of Cu–Fe–Ni sulfides, sulfur, copper and platinum-group elements in orogenic-type spinel lherzolite massifs of Arieg (northeastern Pyrenees, France), Earth Planet. Sci. Lett., 1989, vol. 93, no. 1, pp. 50–64.

    Article  ADS  CAS  Google Scholar 

  18. Lorand, J. and Alard, O., Determination of selenium and tellurium concentrations in Pyrenean peridotites (Ariege, France): New insight into S/Se/Te systematics of the upper in mantle samples, Chem. Geol., 2010, vol. 278, no. 1, pp. 120–130.

    Article  ADS  CAS  Google Scholar 

  19. Luguet, A., Lorand, J., and Seyler, M., Sulfide petrology and highly siderophile element geochemistry of abyssal peridotites: A coupled study of samples from the Kane fracture zone (45° W 23°20 N, MARK Area, Atlantic Ocean), Geochim. Cosmochim. Acta, 2003, vol. 67, no. 8, pp. 1553–1570.

    Article  ADS  CAS  Google Scholar 

  20. Naldrett, A.J., Fundamentals of magmatic sulfide deposits, Rev. Econ. Geol., 2011, vol. 17, pp. 1–50.

    Google Scholar 

  21. Penniston-Dorland, S.C., Wing, B.A., Nex, P.A.M., et al., Multiple sulfur isotopes reveal a primary magmatic origin for the Platreef PGE deposit, Bushveld Complex, South Africa, Geology, 2008, vol. 36, pp. 979–982.

    Article  ADS  CAS  Google Scholar 

  22. Petrov, O.V., Isotope Geology of the Norilsk Deposits, Amsterdam: Springer, 2019.

    Book  Google Scholar 

  23. Rad’ko, V.A., Model of dynamic differentiation of intrusive traps in the northwest of the Siberian Platform, Geol. Geofiz., 1991, vol. 11, pp. 19–27.

    Google Scholar 

  24. Rees, C.E., Sulphur isotope measurements using SO2 and SF6, Geochim. Cosmochim. Acta, 1978, vol. 42, pp. 383–389.

    Article  ADS  CAS  Google Scholar 

  25. Ripley, E.M. and Li, C., A review of the application of multiple s isotopes to magmatic Ni–Cu–PGE deposits and the significance of spatially variable Δ33S values, Econ. Geol., 2017, vol. 112, pp. 983–991.

    Article  Google Scholar 

  26. Ripley, E.M., Lightfoot, P.C., and Li, C., Sulfur isotopic studies of continental flood basalts in the Noril’sk region: Implications for the association between lavas and ore-bearing intrusions, Geochim. Cosmochim. Acta, 2003, vol. 67, pp. 2805–2817.

    Article  ADS  CAS  Google Scholar 

  27. Ripley, E.M., Li, C., and Craig, H., Micro-scale S isotope studies of the Kharaelakh intrusion, Noril’sk region, Siberia: Constraints on the genesis of coexisting anhydrite and sulfide minerals, Geochim. Cosmochim. Acta, 2010, vol. 74, pp. 634–644.

    Article  ADS  CAS  Google Scholar 

  28. Rumble, D., Hoering, T.C., and Palin, J.M., Preparation of SF6 for sulfur isotope analysis by laser heating sulfide minerals in the presence of F2 gas, Geochim. Cosmochim. Acta, 1993, vol. 57, pp. 4499–4512.

    Article  ADS  CAS  Google Scholar 

  29. Shima, M., Gross, W.H., and Thode, H.G., Sulfur isotope abundance in basic sills, differentiated granites and meteorites, J. Geophys. Res., 1963, vol. 12, pp. 2835–2847.

    Article  ADS  Google Scholar 

  30. Smitheringale, W.G. and Jensen, M.L., Sulfur isotopic compositions of the Triassic igneous rocks of eastern United States, Geochim. Cosmochim. Acta, 1963, vol. 27, pp. 1183–1207.

    Article  ADS  CAS  Google Scholar 

  31. Sobolev, A.V., Krivolutskaya, N.A., and Kuz’min, D.V., Petrology of the parental melts and mantle sources of Siberian trap magmatism, Petrology, 2009, vol. 17, no. 3, pp. 253–286.

    Article  CAS  Google Scholar 

  32. Thode, H.G. and Rees, C.E., Measurement of sulphur concentrations and the isotope ratios 33S/32S, 34S/32S and 36S/32S in Apollo 12 samples, Earth Planet. Sci. Lett., 1971, vol. 12, pp. 434–438.

    Article  ADS  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Pierre Cartingy for access to the method of silver sulfide production during work at the Laboratory of Isotope Geochemistry at the Institut de Physique du Globe, Paris, France.

Funding

This study has been supported by the Russian Science Foundation (project no. 22-27-00387).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Krasnova, A. Yu. Bychkov, N. A. Krivolutskaya, T. A. Velivetskaya or V. L. Kosorukov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Baksheev

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnova, E.A., Bychkov, A.Y., Krivolutskaya, N.A. et al. A Method for Determining the Sulfur Isotope Composition in Ultramafic–Mafic Rocks with a Low Sulfur Content. Moscow Univ. Geol. Bull. 78, 781–786 (2023). https://doi.org/10.3103/S0145875223060091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0145875223060091

Keywords:

Navigation