Skip to main content
Log in

A High-precision planetary stratigraphic correlation of sedimentary Phanerozoic sequences using a combination of methods of event, paleomagnetic, sequence and cyclic stratigraphy

  • Published:
Moscow University Geology Bulletin Aims and scope Submit manuscript

Abstract

For the first time a high-precision planetary stratigraphic correlation of Phanerozoic sedimentary marine and continental deposits on the level of mark beds and members was produced, using a combination of methods of event, paleomagnetic, sequence and cyclic stratigraphy. Schemes of diachronism of biostratigraphic zones for the Late Maastrichtian are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolli, H.M., et al., Walvis Ridge—sites 362 and 363, DSDP, 1978, vol. 40, pp. 183–356.

    Google Scholar 

  2. Casadio, S., Griffin, M., and Parras, A., Camptonectes and Plicatula (Bivalvia, Pteriomorphia) from the Upper Maastrichtian of Northern Patagonia: Palaeobiogeographic Implications, Cretaceous Res., 2005, vol. 26, pp. 507–524.

    Article  Google Scholar 

  3. Dinare’s-Turell, J., Baceta, J.I., Pujalte, V., et al., Untangling the Palaeocene Climatic Rhythm: an Astronomically Calibrated Early Palaeocene Magnetostratigraphy aAnd Biostratigraphy at Zumaia (Basque Basin, Northern Spain), Earth And Planet. Sci. Lett., 2003.vol. 216, pp. 483–500.

    Article  Google Scholar 

  4. Fernandez, M., Martin, J., and Casadi, S.,. Mosasaurs (Reptilia) from the Late Maastrichtian (Late Cretaceous) of Northern Patagonia (Rio Negro, Argentina), J. South Amer. Earth Sci., 2008, vol. 25, pp. 176–186.

    Article  Google Scholar 

  5. Gabdullin, R.R., Training sequent stratigraphy, Textbook for raising qualification of specialists, Moscow: Izd. Moscow University, 2010.

    Google Scholar 

  6. Gabdullin, R.R., Badulina, K.V., et al., Sedimentation Rate in the Late Cretaceous Epicontinental Basin of the Russian Platform, Geol. Zhurnal, 2007. no. 3, pp. 36–41.

  7. Gabdullin, R.R., Cyclostratigraphic scale for the Upper Cretaceous of the Russian Platform and its south surroundings. Paper 1. Reasons and Principles of the New Scale, Vestn. Mosk. In-ta. Ser. 4. Geology, 2004a, no. 2, pp. 11–20.

  8. Gabdullin, R.R., Cyclostratigraphic Scale for the Upper Cretaceous of the Russian Platform and its South Surroundings. Paper 2. Correlation of scales and Milankovitch’s cycles, Geol. Zhurnal, 2004b, no. 3, pp. 28–34.

  9. Gabdullin, R.R., Sedimentation Rate in the Epicontinental Basin of the Russian Platform in the Campanian and Maastrichtian Ages, Geol. Zhurnal, 2007, no. 6, pp. 35–38.

  10. Gabdullin, R.R., Upper Cretaceous Beds of the Russian Platform: Sequence Stratigraphy and Milankovitch’s Cycles, Geol. Zhurnal, 2007, no. 5, pp.16–25.

  11. Gabdullin, R.R.,. Cyclostratigraphic Scale for the Upper Cretaceous of the Russian Platform and its South Surroundings. Paper 3. Testing the Scale, Geol. Zhurnal, 2004c, no. 4, pp. 17–21.

  12. Keller, G., Adatte, T., Tantawy, A.A., et al., High Stress Late Maastrichtian-Early Danian Palaeoenvironment in the Neuquén Basin, Argentina, Cretaceous Res., 2007, vol. 28, pp. 939–960.

    Article  Google Scholar 

  13. Kosarev, V.S., Kopyltsov, A.I., Correlation of the Maastrichtian in Natural Sections Of The Monocline Beds of the Northern Caucasus and Oil-Bearing Areas of the Eastern Stavropol Region, Geologiya Nefti i Gaza, 1982, no. 11, pp. 15–25.

  14. Kuss, J. Facies Development of Upper Cretaceous—Lower Tertiary sediments from the Monastery of St. Anthony/Eastern Desert, Egypt, Facies, 1986, vol. 15, pp. 177–194.

    Article  Google Scholar 

  15. Li, L., Late Cretaceous Sea-Level Changes in Tunisia: a Multi-disciplinary Approach, J. Geol. Soc., 2000, vol. 157, pp. 447–458.

    Article  Google Scholar 

  16. Marquillas, R., Sabino, I., Sial, A.N., et al., Carbon and Oxygen Isotopes of Maastrichtian-Danian Shallow Marine Carbonates: Yacoraite Formation, Northwestern Argentina, J. South Amer. Earth Sci., 2007, vol. 23, pp. 304–320.

    Article  Google Scholar 

  17. Matboubi, A., Moussavi-Harami R., Mansouri-Daneshvar P., et al., Upper Maastrichtian Depositional Environments and Sea-Level History of the Kopet-Dagh Intracontinental Basin, Kalat Formation, NE Iran, Facies, 2006, vol. 52, pp. 237–248.

    Article  Google Scholar 

  18. Nikishin, A.M., Zvit. Pobudova komplesnoi modeli produktivnykh utvoren skhidnoi chastini Chornogo morya. Etap 1. Kiiv: DP Naukanaftogaz, ZAT Nadra, 2005. p. 423.

    Google Scholar 

  19. Olivero, E.B., Ponce, J.J., and Martinioni, D.R., Sedimentology and Architecture of Sharpbased Tidal Sandstones in the Upper Marambio Group, Marambio Group, Maastrichtian of Antarctica, Sediment. Geol., 2008, vol. 210, pp.11–26.

    Article  Google Scholar 

  20. Oms, O., Dinares-Turell, J., Vicens, E., et al., Integrated Stragraphy from the Vallcebre Basin (Southeastern Pyrenees, Spain): New Insights on the Cretaceous-Tertiary Transition in Southwest Europe, Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, vol. 255, pp. 35–47.

    Article  Google Scholar 

  21. Pascual, R., Goin, F.J., Gonzalez, P., et al., A Highly Derived Docodont from the Patagonian Late Cretaceous: Evolutionary Implications for Gondwanan Mammals, Geodiversitas, 2000, vol. 22, no. 3, pp. 395–414.

    Google Scholar 

  22. Pimpirev, C., Stoykova, K., Ivanov, M., et al., The Sedimentary Sequences of Hurd Peninsula, Livingston Island, South Shetland Islands: Part of the Late Jurassic-Cretaceous Depositional History of the Antarctic Peninsula, Antarctica: Contributions to Global Earth Sciences, Heidelberg, N.Y.: Springer-Verlag, 2006, pp. 249–254.

    Google Scholar 

  23. Rougier, G.W., Chornogubsky, L., Casadio, S., et al., Mammals from the Allen Formation, Late Cretaceous, Argentina, Cretaceous Res., 2009, vol. 30, pp. 223–238.

    Article  Google Scholar 

  24. Scotese, C.R., Atlas of Earth History, vol. 1. Paleogeography, Paleomap Project. Texas, Arlington, 2001, p. 52.

  25. Smith, A.G. and Briden, J.C., Mesozoic and Cenozoic Paleocontinental Maps. Cambridge: Cambridge University Press, 1977, p. 64.

    Google Scholar 

  26. Stueben D., Kramar, U., and Berner, Z.A., Late Maastrichtian Paleoclimatic and Paleoceanographic Changes Inferred from Sr/Ca Ratio and Stable Isotopes, Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, vol. 199, pp. 107–127.

    Article  Google Scholar 

  27. Tantawy, A.A., Keller, G., Adatte, T., et al., Maastrichtian to Paleocene Depositional Environment of the Dakhla Formation, Western Desert, Egypt: Sedimentology, Mineralogy, and Integrated Micro- and Macrofossil Biostratigraphies, Cretaceous Res., 2001, vol. 22, pp. 795–827.

    Article  Google Scholar 

  28. ten Kate and W.G.H.Z., Sprenger, A., Orbital cyclicities above and below the Cretaceous/Paleogene boundary at Zumaya (N Spain), Agost and Relleu (SE Spain), Sediment. Geolog., 1993, vol. 87, pp. 69–101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Gabdullin.

Additional information

Original Russian Text © R.R. Gabdullin, 2011, published in Vestnik Moskovskogo Universiteta. Geologiya, 2011, No. 1, pp. 22–28.

About this article

Cite this article

Gabdullin, R.R. A High-precision planetary stratigraphic correlation of sedimentary Phanerozoic sequences using a combination of methods of event, paleomagnetic, sequence and cyclic stratigraphy. Moscow Univ. Geol. Bull. 66, 21–28 (2011). https://doi.org/10.3103/S0145875211010029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0145875211010029

Keywords

Navigation