Skip to main content
Log in

Coarsely discrete fractal structure of geological medium and challenges in tectonophysical modeling

  • Published:
Moscow University Geology Bulletin Aims and scope Submit manuscript

Abstract

Analysis of nonlinear processes of tectonic fracturing reveals a fundamental problem of physical modeling of dislocations and stresses in the Earth’s crust. A structure assigned in experiments and simulating the appearance and development of dislocations does not have the self-organized coarsely discrete fractal structure of the natural geological environment, i.e., self-similarity between units, into which it is divided. A fractal structure initially assigned would produce an extremely unstable modeling result, whose probability of similarity with one actually occurring among those theoretically possible tends to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allegre, C.J, Le Mouel, J.L., Chau, H.D., and Narteau, C., Scaling Organization of Fracture Tectonics (SOFT) and Earthquake Mechanism, Phys. Earth and Planet. Inter., 1995,vol. 92, nos. 3–4, pp. 215–233.

    Article  Google Scholar 

  • Bak, P. and Tang, C., Earthquakes as Self-organized Critical Phenomena, J. Geophys. Res., 1986, vol. 94, pp. 15635–15637.

    Article  Google Scholar 

  • Baklashov, I.V., Deformirovanie i razrushenie porodnykh massivov (Deformation and Destruction of Rock Massives), Moscow: Nedra, 1988.

    Google Scholar 

  • Geilikman, M.B. and Pisarenko, V.F., On Self-similarity in Geophysical Phenomena, in Diskretnye svoistva geofizicheskoi sredy (Discrete Properties of Geophysical Medium), Sadovsky, M.A., Ed., Moscow: Nauka, 1989.

    Google Scholar 

  • Geilikman, M.B., Golubeva, T.V., and Pisarenko, V.F., Self-similar Hierarchic Structure of the Field of Earth-quake Sources, Vychislitel’naya Seismologiya, 1990, no. 23, pp. 123–139.

  • Goncharov, M.A. and Frolova, N.S., “Forbidden” Orientation of Fractures with Displaced Limbs: Effect of Deformation of Structured Medium, in Napryazhenno-deformirovannoe sostoyanie i seismichnost’ litosfery (Deflected Mode and Seismicity in the Lithosphere), Moscow: Nauka, 2003, pp. 40–43.

    Google Scholar 

  • Hirata, T., Datoh, T., and Ito, K., Fractal Structure of Spatial Distribution of Microfracturing in Rock, Geophys. J. Roj. Astron. Soc., 1987, vol. 90, no. 2, pp. 369–377.

    Google Scholar 

  • Hirata, T., Fractal Dimension of Fault Systems in Japan: Fractal Structure in Rock Fracture Geometry at Various Scales, PAGEOPH, 1989, vol. 131, nos. 1–2, pp. 157–170.

    Article  Google Scholar 

  • Keilis-Borok, V.I., Kosobokov, V.G., and Mazhkenov, S.A., On Similarity in Spatial Distribution of Seismicity, Vychislitel’naya Seismologiya, 1989, no. 22, pp. 28–40.

  • Koronovskii, N.V. and Naimark, A.A., Concept of Structural Parageneses in the Light of Ideas on Discreteness of Geological Medium, in GEOrazrez. Elektronnoe nauchnoe izdanie. Universitet “Dubna” (Geosection. Virtual Scientific Publication, Dubna Uiversity), Dubna, 2008, issue 1, pp. 1–25.

  • Koronovskii, N.V. and Naimark, A.A., Earthquake Prediction: Is It a Real Perspective or a Challenge to Science?, Vestn. Mosk. Univ., Ser. 4. Geologiya, 2009, no. 1, pp. 12–22.

  • Kosobokov, V.G. and Nekrasova, A.K., A Common Law of Earthquake Similarity: A Global Map of Parameters, Vychislitel’naya Seismologiya, 2004, no. 35, pp. 160–176.

  • Kuksenko, V.S., Physical Reasons of Similarity and Releases of Elastic Energy at Destruction of Rocks at Different Scale Levels, in Fizicheskie osnovy prognozirovaniya i razrusheniya gornykh porod pri zemletryaseniyakh (Physical Fundamentals of Prediction and Destruction of Rocks at Earthquakes), Moscow: Nauka, 1987, pp. 68–73.

    Google Scholar 

  • Makarov, P.V., Evolutionary Nature of Fragmented Structure of Geologic Materials and Geological Media. A Universal Criterion of Fractal Divisibility, Geol. Geofiz., 2007, vol. 48, no. 7, pp. 724–746.

    Google Scholar 

  • Mukhamedov, V.A., Fractal Properties of Seismic High Frequency Noise and Mechanisms of Its Generation, Izv. Akad. Nauk SSSR, Fiz. Zem., 1992, no. 3, pp. 39–49.

  • Naimark, A.A., A Scenario of Occurrence of Tectonodynamic Deterministic Chaos, Vestn. Mosk. Univ. Ser. 4. Geologiya, 2003, no. 5, pp. 22–31.

  • Naimark, A.A., The Structuredness of Geological Medium—Is It a Property or a State? Problem, Theory, Terminology, Vestn. Mosk. Univ. Ser. 4. Geologiya, 2006, no. 2, pp.73–80.

  • Osokina, D.N., Modeling of Tectonic Fields of Stresses Caused by Fractures and Inhomogeneities in the Earth Crust, in Eksperim. tektonika (metody, rezul’taty, perspektivy) (Experimental Tectonics: Methods, Results, and Perspectives), Moscow: Nauka, 1989, pp. 163–197.

    Google Scholar 

  • Poulton, M.M., Mojtaba, N., and Fabmer, I.W., Scale Invariant Behavior of Massive and Fragmented Rock, Int. J. Rock Mech. Min. and Geomech. Abstr., 1990, vol. 27, pp. 219–221.

    Article  Google Scholar 

  • Prigogine, I. and Stengers, I., Vremya, khaos, kvant: K resheniyu paradoksa vremeni (Time, Chaos, Quantum: To a Solution of the Time Paradox), Moscow: Progress, 1994.

    Google Scholar 

  • Prigogine, I. and Stengers, I., Poznanie slozhnogo (Cognition of Complex), Moscow: Mir, 1990.

    Google Scholar 

  • Sadovskii, M.A. and Pisarenko, V.F., Seismicheskii protsess v blokovoi srede (Seismic Process in Fragmented Medium), Moscow: Nauka, 1991.

    Google Scholar 

  • Sadovskii, M.A., Automodel Nature of Geodynamic Processes, Vestn. Akad. Nauk SSSR, 1986, no. 8, pp. 3–11.

  • Sadovskii, M.A., Bolkhovitinov, L.G., and Pisarenko, V.F., Properties of Rock Discreteness, Izv. Akad. Nauk SSSR, Fiz. Zem., 1982, no. 12, pp. 3–18.

  • Sornette, A., Davy, P., and Sornette, D. Growth of Fractal Fault Patterns, Phys. Rev. Lett., 1990, vol. 65, no. 18, pp. 2266–2269.

    Article  Google Scholar 

  • Stakhovskii, I.R., Self-similar Earthquake Generating Structure of the Earth Crust: A Review of the Problem and Mathematical Model, Fiz. Zemli, 2007, no. 12, pp. 35–47.

  • Talitskii, V.G., Problems in Modeling Tectonic Deformations and a Model of Structure Formation in Geological Medium, Vestn. Mosk. Univ. Ser. 4. Geologiya, 2002, no. 4, pp. 3–12.

  • Tyupkin, Yu.S., Occurrence of Self-similar Seismicity Structure during Foreshock and Aftershock Processes, Vychislitel’naya Seismologiya, 2001, no. 32, pp. 190–201.

  • Zakharov, V.S., Characteristics of Self-similarity in Seismicity and Networks of Active Faults in Eurasia, in Georazrez. Elektronnoe nauchnoe izdanie. Universitet “Dubna” (Geosection. Virtual Scientific Publication. Dubna University), Dubna, 2008, no. 1, pp. 1–20.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Naimark.

Additional information

Original Russian Text © A.A. Naimark, 2009, published in Vestnik Moskovskogo Universiteta. Geologiya, 2009, No. 5, pp. 3–11.

About this article

Cite this article

Naimark, A.A. Coarsely discrete fractal structure of geological medium and challenges in tectonophysical modeling. Moscow Univ. Geol. Bull. 64, 273–280 (2009). https://doi.org/10.3103/S0145875209050019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0145875209050019

Key words

Navigation